

2016 Copyright of onSponge Pte Ltd
All rights reserved. No parts of this material may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner.

P4 Solutions

Note : In all solution, u represent units and p represent parts

Chapter 1 Whole Numbers

Answers to Unit 1.1 - Highest Common Factors

Let's Get Started 1.1

Exercise A
1.

Factors of 12: 1, 2, 3, 4, 6, 12
Factors of $30: 1,2,3,5,6,10,15,30$
Common factors of 12 and $30: 1,2,3,6$
Highest common factor ('HCF'): $\underline{6}$
2.

Factors of $18: 1,2,3,6,9,18$
Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36
Common factors of 18 and $36: 1,2,3,6,9,18$
Highest common factor ('HCF'): 18

Exercise B

1.

3	54,	81
3	18,	27
3	6,	9
	2,	3

Highest common factor ('HCF'): $3 \times 3 \times 3=27$
2.

Highest common factor ('HCF'): $\underline{2 \times 2=4}$
3.

2	32,	64,	96
2	16,	32,	48
8	8,	16,	24
	1,	2,	3

Highest common factor ('HCF'): $\underline{2 \times 2 \times 8=32}$

Let's Learn 1.1

Ask Yourself

1. No. The result will not give equal number of each animal in each cage.

Think Further

1. Number of rabbits in each cage $=32 \div 8$

Number of hare in each cage $=48 \div 8$
$=6$

Let's Practise 1.1
Question 1

4	72,	84
	18,	21
	6,	7

Maximum number of necklaces $=4 \times 3$ $=12$
(a) She can make 12 necklaces.
(b) There are 6 red beads and 7 blue beads in each necklace.

Question 2

5	45,	75
3	9,	15
	3,	5

Maximum number of trays needed $=5 \times 3$

$$
=15
$$

(a) She needs 15 trays.
(b) There are $\mathbf{3}$ brownies and $\mathbf{5}$ strawberry cupcakes in each tray.

Question 3

2	84,	126,	210
3	42,	63,	105
7	14,	21,	35
	2,	3,	5

Number of staff $=2 \times 3 \times 7$

$$
=42
$$

(a) She has 42 staff.
(b) Each staff received 2 cups, 3 coasters and 5 ball pens.

Question 4

2	48,	80,	96
2	24,	40,	48
2	6,	10,	12
	3,	5,	6

(a) $2 \times 4 \times 2=16$

The greatest possible length of each of the smaller pieces of copper wire is 16 cm .
(b) $3+5+6=14$

He can get 14 smaller pieces of copper wire of equal length.

Question 5

3	24,	42
2	8,	14
	4,	7

(a) $3 \times 2=6$

The largest possible length of the side of each square coloured paper is $\mathbf{6 ~ c m}$.
(b) $4 \times 7=28$

Peter needs $\mathbf{2 8}$ square coloured papers.

Question 6

2	20,	36
	10,	18
	5,	9

(a) $2 \times 2=4$

The largest possible length of the side of each square cookie is 4 cm .
(b) $5 \times 9=45$

Chef Lee can make 45 square cookies.

Answers to Unit 1.2 - First Common Multiple

Let's Get Started 1.2

Exercise A

1.

First ten multiples of $3: \underline{3,6} 9,12$, (15.) $18,21,24,27$,(30)
First ten multiples of $5: 5,10$, (15, $20,25,30,35,40,45,50$
First common multiple of 3 and 5: $\underline{15}$
2.

First ten multiples of $4: \underline{4} 8,12,16,24,24,32,36,40$
First ten multiples of $10: \frac{10,(20)}{100} 30,40,50,60,70,80,90$, 100

First common multiple of 4 and $10: \underline{\mathbf{2 0}}$

Exercise B

1.

3		9,
3	24	
3	3,	8
	1,	8
	1,	1

$$
\begin{aligned}
\text { FCM of } 9 \text { and } 24 & =3 \times 3 \times 8 \\
& =\underline{\mathbf{7 2}}
\end{aligned}
$$

2.

$$
\begin{array}{l|rr}
3 & 15, & 27 \\
\cline { 2 - 3 } 5 & 5, & 9 \\
\cline { 2 - 3 } 9 & 1, & 9 \\
\cline { 2 - 3 } & 1, & 1 \\
\cline { 2 - 3 } & &
\end{array}
$$

$$
\begin{aligned}
\text { FCM of } 15 \text { and } 27 & =3 \times 5 \times 9 \\
& =\underline{135}
\end{aligned}
$$

3.

3	18,	48
2	6,	16
3	3,	8
8	1,	8
	1,	1

$$
\begin{aligned}
\text { FCM of } 18 \text { and } 48 & =3 \times 2 \times 3 \times 8 \\
& =\underline{144}
\end{aligned}
$$

Let's Learn 1.2

Ask Yourself

1. You will have to find the first common multiple since you will need to find the day on which both of them would meet (when these numbers should overlap each other).

Think Further

4,	6,	7
2,	3,	7
1,	3,	7
1,	1,	7
1,	1,	1

FCM of 4,6 and $7=2 \times 2 \times 3 \times 7$

$$
=84
$$

They will cycle again 84 days later.

Let's Practise 1.2

Question 1

FCM of 5 and $10=5 \times 2=10$

Both lamps would flicker at 7.45 p.m.

Question 2

2	4,	8,	10
2	2,	4,	5
2	1,	2,	5
5	1,	1,	5
	1,	1,	1

FCM of 4,8 and $10=2 \times 2 \times 2 \times 5$

$$
=40
$$

The position of the first customer who will receive all 3 free items is the $40^{\text {th }}$ customer.

2	2,	6,	15
3	1,	3,	15
	1,	1,	5
	1,	1,	1

FCM of 2,6 and $15=2 \times 3 \times 5$

$$
=30
$$

The shortest length is $\mathbf{3 0} \mathbf{~ c m}$.

Question 4

4	5,	8,	12
5	5,	2,	3
2	1,	2,	3
3	1,	1,	3
	1,	1,	1

LCM of 5,8 and $12=4 \times 5 \times 2 \times 3$

$$
=120
$$

Olivia has a minimum of $\mathbf{1 2 0}$ paper clips.

Question 5

Multiples of 5	5	10	15	20	25	30	35	40	45	50
Add 3 sweets	+3	+3	+3	+3	+3	+3	+3	+3	+3	+3
Actual sweets	8	13	18	23	28	33	38	43	48	53

Multiples of 6	6	12	18	24	30	36	42	48
Add 13 sweets	+13	+13	+13	+13	+13	+13	+13	+13
Actual sweets	19	25	31	37	43	49	55	61

Julie has 43 sweets.

Question 6

Multiples of 4	4	8	12	16	20	24	28	32	36	40
Add 15 pens	+15	+15	+15	+15	+15	+15	+15	+15	+15	+15
Actual pens	19	23	27	31	35	39	43	47	51	55

Uultiples of 7	7	14	21	28	35	42	49	56	63	
Subtract 17 pens	-17	-17	-17	-17	-17	-17	-17	-17	-17	
Actual pens	-	-	4	11	18	25	32	39	46	

Minimum number of pens Kristine has is 39 .

Let's Get Started 1.3

2.

A	1 u	1 u	15
C	1 u		

3.

S	14	14	1 u	45
A	1 u			

Ask Yourself

1. White chips are more than black chips.
2. The bar representing white chips should be longer than that representing the black chips.

Think Further

1. There would be more black chips.

Let's Practise 1.3

Question 1

$9500+500=10000$
Irene picked 10000 tea leaves.
$9500+10000=19500$
They picked 19500 tea leaves in all.

Question 2

$21750-6050=15700$
The smaller number is 15700 .
$15700+21750=37450$
Sum of the two numbers is $\mathbf{3 7} 450$.

Question 3

At first

In the end

$$
\begin{aligned}
1 \mathrm{u} & =180 \\
2 \mathrm{u} & =180+180 \\
& =360
\end{aligned}
$$

Sheila had 360 seashells in the end.
$360+200=560$
Sheila had 560 seashells at first.

Question 4

At first

In the end

$2 u=12$
$1 u=12 \div 2=6$
There were 6 girls at the library in the end.
$6 u+18=6 \times 6+18$
$=54$
There were $\mathbf{5 4}$ children at the library first.

Question 5

At first

In the end

$$
\begin{aligned}
2 u & =900+2880 \\
& =3780 \\
1 u & =3780 \div 2 \\
& =1890
\end{aligned}
$$

Question 5 (Cont.)

There were 1890 mini fruit tarts in Warehouse B in the
end.

$$
1 u+900=1890+900
$$

$$
=2790
$$

There were $\mathbf{2 7 9 0}$ mini fruit tarts in Warehouse B at first.

Question 6

At first

$3 u=199+215$
$=414$
$1 u=414 \div 3$
$=138$
Mrs Lim had 138 button pins in the end.
$5 u+199+50=5 \times 138+249$

$$
=939
$$

They had 939 button pins at first.

Answers to Unit 1.4 - Equal Stage

Let's Get Started 1.4

2.

In the end

At first

3.

At first
A

In the end

4.

In the end
C
E \square

At first
C

5.

In the end

At first

Let's Learn 1.4

Ask Yourself

1. From 'At first' since it is given in the question that Sandy and Ella has the same amount of money at first.
2. It would be easier to work on the 'in the end' model as the changes occurred after spending on the necklace. This also helps to make the comparison easier and to clearly see the "At First" model.

Think Further

1. Sandy has four times as much money as Ella. After Ella received \$12, they both have the same amount of money.

Let's Practise 1.4

Question 1

At first
H

$2 u=6$
$1 u=6 \div 2$
$=3$
$3 u=3 \times 3$
$=9$
Helen had 9 soft toys at first.

Question 2

At first

A \qquad
A

$4 u=24$
$1 u=24 \div 4$
$=6$
Ben took 6 photos.

Question 3
At first

In the end

$$
3 u=1590-120
$$

$$
=1470
$$

$$
1 u=1470 \div 3
$$

$$
=490
$$

$$
1 u-120=490-120
$$

$$
\text { = } 370
$$

There were 370 trees in Orchard X at first.

Question 4

In the end
C

$5 u=7200-1000$

$$
=6200
$$

$1 u=6200 \div 5$

$$
=1240
$$

$6 u=6 \times 1240$

$$
=7440
$$

Constance had \$7440 at first.

Question 5

In the end

At first

F	$1 u$	24	
G	$1 u$ $1 u$ 24	1	

$2 u=96-24-8$
$=64$
$1 u=64 \div 3$

$$
=32
$$

Fred had 32 eggs at first.
$1 u+24=32+24$

$$
=56
$$

Geneve has $\mathbf{5 6}$ eggs at first.

Question 6

In the end

At first

$2 u=30$
$1 u=30 \div 2$
$=15$
There were 15 women at the park at first.
$1 u+6=15+6$
$=21$
There were $\mathbf{2 1}$ men and $\mathbf{2 1}$ women in the park in the end.

Answers to Unit 1.5 - Internal Transfer
Let's Get Started 1.5
2.

At first

In the end

3.

In the end

At first

4.

At first

5.

In the end

At first

Ask Yourself

1. From 'At first' since it is given in the question that Sean and Jovan had an equal number of toy cars at first.

Think Further

2. The above solution would change. Sean decreases by 29 and Jovan increases by 58 toys cars.

Let's Practise 1.5

Question 1

At first

	\square
S	\square
T	\square

$2 u=14 \times 2$
$=28$
$1 u=28 \div 2$

$$
=14
$$

Seraphine had 14 vanilla wafers in the end.

$$
\begin{aligned}
3 u & =3 \times 14 \\
& =42
\end{aligned}
$$

Tanya had 42 vanilla wafers in the end.

Question 2
At first

In the end

$8 u=550+4640+520$

$$
=5680
$$

$1 u=5680 \div 8$
$=710$
Yvette has 710 bookmarks in the end.

Question 3
In the end

At first

J	1 u	3700			
K	1u	3700	3700		

$$
\begin{aligned}
2 u & =15000-3700-3700 \\
& =7600 \\
1 u & =7600 \div 2 \\
& =3800
\end{aligned}
$$

Question 3 (Cont.)

$$
1 u+7400=3800+7400
$$

$$
=11200
$$

Kaitlin had \$11 200 at first.

Question 4

Morning
B

Evening

Towels transferred from A to $B=2500-700$

$$
=1800
$$

$2 u=3600$
$1 u=3600 \div 2$

$$
=1800
$$

There were 1800 towels in Factory A in the evening.
$1800+1800=3600$
Each factory had $\mathbf{3 6 0 0}$ towels in the morning.

Question 5

At first

In the end

M gave to $J=47-17$

$$
=30
$$

$1 u=35$
Melvin had 35 cookies in the end.
$1 u+5=35+5$
$=40$
Johnny had 40 cookies at first.

Question 6

$8 u=1680$
$1 u=1680 \div 8$

$$
=210
$$

$3 u=3 \times 210$

$$
=630
$$

630 cards must be moved from B to A.

Answers to Unit 1.6 - One Item Unchanged

Let's Get Started 1.6
2.

What had changed?	What remained unchanged?
• Damien's money	• Gillian's money
- Total amount of money	
both had	
- Difference between the	
amount of money both had	

3.

What had changed?	What remained unchanged?
- Volume of water in Tank B	• Volume of water in Tank A
- Total volume in Tank A and	
Tank B	
- Difference in the volume of	
water in Tank A and Tank B	

4.

What had changed?	What remained unchanged?
• Number of women	• Number of men
• Total number of passengers	
• Difference between the	
number of men and the	
number of women.	

Ask Yourself

1. The number of cookies Jordan had changed as he ate some.
2. Michelle still had the same number of cookies.

Think Further

1. In the revised question, Michelle's number of cookies is no longer the same. Now the number of cookies Jordan has remained constant. Because of this, the 1 unit now represents the amount Michelle has left rather than the amount Jordan has left.

Let's Practise 1.6

Question 1
At first

In the end

$4 u=16+4$
$=20$
$1 u=20 \div 4$
$=5$
Wayne had 5 shirts in the end.
$5 u=5 \times 5$

$$
=25
$$

Paul had $\mathbf{2 5}$ shirts in the end.

Question 2
At first

In the end

$5 u=23400-19200$

$$
=4200
$$

$1 u=4200 \div 5$
$=840$
$1 u+23400=840+23400$

$$
=24240
$$

There were $\mathbf{2 4} 240$ ants in Farm A at first.

Question 3

At first

In the end

$2 \mathrm{u}=12+12$

$$
=24
$$

$$
1 u=24 \div 2
$$

$$
=12
$$

Denise had 12 hair clips in the end.
$12+12=24$
Denise had $\mathbf{2 4}$ hair clips at first.

Question 4

At first

L

In the end

Gillian had 45 pens in the end.
$45+15=60$
Gillian had 60 pens at first.

Question 5
At first

In the end

$5 u=750$
$1 u=750 \div 5$

$$
=150
$$

There were 150 boys at the science fair in the end.
$9 u=9 \times 150$

$$
=1350
$$

There were 1350 children at the Science fair at first.

Question 6
At first

$8 u=3200$
$1 u=3200 \div 8$
$=400$
There were 400 men at the convention centre in the end.
$2 u=2 \times 400$

$$
=400
$$

There were $\mathbf{8 0 0}$ more women than men at the convention in the end.

Answers to Unit 1.7 - Difference Unchanged

Let's Get Started 1.7

2.

At first

A

B

In the end

3.

Now

Future

4.

At first

After

5.

At first

1 yr old
15-day

Six months later

Ask Yourself

1. It is a Difference Unchanged problem because the difference in their age never changes.
2. The age of Aunt Lisa and the age of her nephew change as time passes.

Think further

1. Aunt Lisa is 51 years old and her nephew is 15 years old. How old will Aunt Lisa be when she is twice as old as her nephew?

Now

Future

$1 \mathrm{u}=36$ (nephew's age in the future)
$36+36=72$
Aunt Lisa will be $\mathbf{7 2}$ years old when she is twice as old as her nephew.

Let's Practise 1.7

Question 1

Present

Jamie = 50 years old
Daughter $=29$ years old
Difference $=21$ years old
Past

$3 u=21$
$1 u=21 \div 3$
$=7$
$29-7=22$
Jamie's age was 4 times as old as her daughter
22 years ago.

Question 2

Age difference between Alicia and Mrs Fong = 12 years
Present

$2 u=12$
$1 u=12 \div 2$

$$
\text { = } 6
$$

Mrs Fong $=3 \times 6$

$$
=18
$$

7 years' time (future)
$18+7=25$
Mrs Fong will be 25 years old in 7 years' time.

Question 3

Present

D						
Difference						

(a) Total age now $=8 \mathrm{u}$

$$
\begin{aligned}
8 u & =64-16 \\
& =48 \\
1 u & =48 \div 8 \\
& =6 \\
6 u & =6 \times 6 \\
& =36
\end{aligned}
$$

Their age difference at present is 36 years.

Question 3 (Cont)
Some years later

$2 u=36$
$1 u=36 \div 2$
$=18$
Dan will be 18 years old, when Mike is 3 times as old as him.

Question 4

At first

In the end

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

Decrease $=4 u-3 u$
$=1 u$
$1 \mathrm{u}=16$
There were 16 green chairs in the hall in the end.
$4 u=4 \times 16$
$=64$
There were $\mathbf{6 4}$ chairs in the hall in the end.

Question 5

At first
B
W

End

$5 u=115$
$1 u=115 \div 5$
$=23$
Total balloons and whistles bought $=3 u+3 u$

$$
=6 u
$$

$6 u=6 \times 23=138$
She bought 138 balloons and whistles in all.

Question 6

At first

$$
\begin{aligned}
& \text { Joni Spent }=21 u-16 u \\
& \quad=5 u \\
& 5 u=45 \\
& \begin{aligned}
1 u & =45 \div 5 \\
& =9
\end{aligned}
\end{aligned}
$$

Difference $=14 u$
$14 u=14 \times 9=126$
Joni had \$126 more than Glen.

Answer to Unit 1.8 - Repeated Items

Let's Get Started 1.8
2.

Ask yourself

1. The repeated item is the apricots.
2. When drawing model, make the model representing the apricots in the middle as it makes it easier to make comparison.

Think Further

Total $=6 u+2 u+1 u$
$=9 \mathrm{u}$
$9 u=2412$
$1 u=2412 \div 9$

$$
=268
$$

$6 u=6 \times 268$

$$
=1608
$$

There were 1608 pineapples

Let's Practise 1.8

Question 1

$25+25+30=80$
$3 u=344-80$
$=264$
$1 u=\$ 264 \div 3$
$=88$
Leonard had \$88.
$88+25+30=143$
Jason has \$143.

Question 2

$1 u=40$
$5 u=5 \times 40$
$=200$
$4 \times 36=144$
$5 u+144=200+144$

The girls had 344 pairs of earrings altogether.

Question 3

C						
R	1 u	25	1 u	25	$1 u$	25
	1 u	25				
D	1 l	279				

$$
\begin{aligned}
25 & \times 3=75 \\
2 u & =279-75 \\
& =204
\end{aligned}
$$

$$
1 \text { unit }=204 \div 2
$$

$$
=102
$$

There were 102 stalks of daisies.
Difference in carnations and roses $=2 u+50$
$2 u+50=204+50$

$$
=254
$$

There were $\mathbf{2 5 4}$ more stalks of carnations than roses.

Question 4
A

B

Difference between boys and girls $=3 u-1 u$

$$
=2 u
$$

$2 u=2300$
$1 u=2300 \div 2$

$$
=1150
$$

$$
8 u=8 \times 1150
$$

$$
=9200
$$

There were $\mathbf{9 2 0 0}$ adults at the book fair.

Question 5

B									
R+G									

R	
G	

Difference between red and grey $=2 u-1 u$

$$
=1 u
$$

$1 u=10$
Difference between black and red $=9 u-2 u$

$$
=7 u
$$

$7 \mathrm{u}=7 \times 10$
$=70$
Mrs. Wong has 70 more black than red shawls.

Question 6

Difference between Z and $Y=2 u-1 u$

$$
=1 u
$$

$1 u=42$
$2 u=2 \times 42$

$$
=84
$$

$$
4 u=4 \times 42
$$

$$
=168
$$

Storerooms X, Y and Z can hold 168, 42 and 84
boxes respectively.

Answers to Unit 1.9 - Quantity x Value
Let's Get Started 1.9
2.

Item	Quantity of Items	Value of each item (Wheels)
C	1 u	4
M	1 u	2

3.

Item	Quantity of Items	Value of each item (Drawer)
C	4	$2 u$
R	9	$1 u$

4.

Item	Quantity of Items	Value of each item (Stationery)
Pens	15	3 u
Pencils	10	1 u

Ask yourself

1. The quantity is represented by " 4 times as many as" and the values are $\$ 3$ and $\$ 1$ for pineapples and peaches respectively.
2. The problem sum provides both the quantity and the values and there is only one total provided. In Guess and Check questions we are normally provided with two totals.

Think Further

1. Farmer Sally sold a total of 150 pineapples and peaches. Each pineapple was sold at $\$ 3$ and each peaches at $\$ 2$ less. If Farmer Sally collected $\$ 210$ from the sale of all the fruits, how many more peaches than pineapples did she sell?

Let's Practice 1.9

Question 1

Items	Quantity of Items	\times	Value of each unit (Wheels)	Total Value (Wheels)
B	2 u	\times	2	4 u
G	1 u	\times	4	4 u
Total	3 u			8 u

$8 u=160$
$1 u=160 \div 8$

$$
=20
$$

There were 20 go-karts.
$3 u=3 \times 20$
$=60$
There were $\mathbf{6 0}$ vehicles altogether.

Question 2

Items	Quantity of Items	\times	Value of each unit (\$)	Total Value (\$)
C	2 u	\times	1	2 u
D	1 u	\times	8	8 u
Total	3 u			10 u

$10 u=80$
$1 u=80 \div 10$
$=8$
She sold 8 more coconuts than durians.

Question 3

Items	Quantity of Items	\times	Value of each unit (Candy)	Total Value (Candy)
G	1 u	\times	2	2 u
B	3 u	\times	1	3 u
Total	4 u			$5 u$

$5 u=150$
$1 u=150 \div 5$

$$
=30
$$

There were 30 girls.
$2 u=2 \times 30$
$=60$
There were $\mathbf{6 0}$ more boys than girls at the party.

Question 4

Items	Quantity of Items	\times	Value of each unit (Treats)	Total Value (Treats)
G	3 u	\times	3	9 u
S	1 u	\times	2	2 u
Total	4 u			11 u

$9 u-2 u=7 u$
$7 u=35$
$1 u=35 \div 7$
$=5$
There were 5 sheep.
$4 \mathrm{u}=4 \times 5$

$$
=20
$$

There were $\mathbf{2 0}$ animals that received the treats from the children.

Page 13 For more review questions, please visit www.onsponge.com

Question 5

Items	Quantity of Items	\times	Value of each unit (Chicken wings)	Total Value (Chicken wings)
Girls	3 u	\times	4	12 u
Boys	1 u	\times	8	8 u
Total	4 u			20 u

$$
\begin{aligned}
& 12 u-8 u=4 u \\
& 4 u=52 \\
& \begin{aligned}
1 u & =52 \div 4 \\
& =13 \\
20 u & =20 \times 13 \\
& =260
\end{aligned}
\end{aligned}
$$

There were 260 chicken wings that were eaten at the barbeque.

Question 6

Items	Quantity of Items	\times	Value of each unit Strawberry	Total Value (Strawberry)
Adults	12	\times	$3 u$	$36 u$
Children	30	\times	$1 u$	$30 u$
Total	42			$66 u$

$$
\begin{aligned}
36 u & -30 u=6 u \\
6 u & =42 \\
1 u & =42 \div 6 \\
& =7
\end{aligned}
$$

Strawberry picked $=66 u$
$66 u=66 \times 7$

$$
=462
$$

They picked 462 strawberries together.

Answers to Unit 1.10 - Gap \& Difference

Let's Get Started 1.10
3.

Gap $=18-6$
$=12$ (key chains)
Difference $=6-3$
= 3 (key chains)
4.

Case 1

Case 2

Gap $=8+7$
$=15$ (badges)
Difference =4-1

$$
\text { = } 3 \text { (badges/member) }
$$

Ask yourself

1. When both conditions result in 'short or 'left over' scenario, the two results are subtracted. When one result is 'short' and other is 'left over' we add the two results.

Think Further

1. Pablo has some money. If he buys 7 books, he will be short of $\$ 26$. If he buys 5 books, he will be left with $\$ 2$. Find the amount of money Pablo has.

Let's Practice 1.10

Question 1

$$
\text { Gap }=19-5
$$

$$
=14
$$

Difference between Case 1 and Case $2=5-3$
(a) $14 \div 2=7$

She shared the tarts with 7 neighbours.
(b) Number of tarts made:

Using Case 1:7×3+19=40
Using Case 2:7×5+5=40 (Checked)
She made 40 tarts.

Question 2

Actual number of stamps

$$
\text { Gap }=21-3
$$

=18
Difference between Case 1 and Case $2=6-4$

$$
=2
$$

(a) $18 \div 2=9$

The stamps fill 9 pages of the album.
(b) Number of stamps:

Using Case 1: $4 \times 9+21=57$
Using Case 2 : $6 \times 9+3=57$ (Checked)
Amos had $\mathbf{5 7}$ stamps.

Question 3

$$
\text { Gap }=8-2
$$

$$
=6
$$

Difference between Case1 and Case $2=11-8$
$=3$
(a) $6 \div 3=2$

Shawn has 2 friends.
(b) Number of pens:

Using Case 1: $2 \times 8-2=14$
Using Case 2: $2 \times 11-8=14$ (Checked)
Shawn has 14 pens.

Question 4

$$
\text { Gap }=25-7
$$

$$
=18
$$

Difference between Case1 and Case $2=6-2=2$

Question 4 (Cont...)
(a) $18 \div 2=9$

There were 9 workers.
(b) Number of mooncakes bought:

Using Case 1: $9 \times 4-7=29$
Using Case 2 : $9 \times 6-25=29$ (Checked)
Mr Tan bought 29 mooncakes.

Difference between Case 1 and Case $2=15-12$
(a) $18 \div 3=6$

There were 6 groups of volunteers.
(b) Number of volunteers:

Using Case 1: $12 \times 6+10=82$
Using Case 2 : $15 \times 6-8=82$ (Checked)
There were 82 volunteers at the event.

(a) Number of marbles: $96 \div 4=24$

There were 24 bags.
Using Case 1: $6 \times 24+36=180$
Using Case 2: $10 \times 24-60=180$ (Checked)
Mr Tang gave 180 marbles to his sons.

(b) $4 u=180$
$1 u=180 \div 4$
$=45$
Keith received 45 marbles.

Page 15 For more review questions, please visit www.onsponge.com

Answers to Review 1

Question 1

$2 u=2160-652$
$=1508$
$1 u=1508 \div 2$

$$
=754
$$

754 children attended the Gala Premier
$754+652=1406$
1406 adults attended the Gala Premier.

Question 2

At first

In the end

Juwita had 7 bottle caps in the end.
$2 \mathrm{u}=7 \times 2$

$$
=14
$$

Each girl had 14 bottle caps at first.

Question 3

In the end

At first

$$
\begin{aligned}
2 u & =16 \\
1 u & =16 \div 2 \\
& =8
\end{aligned}
$$

There were 8 men at first
$3 u=3 \times 8$

$$
=24
$$

There were 24 women at the session at first.

Question 6 (Cont.)

$$
\begin{aligned}
2 u & =40 \\
1 u & =40 \div 2 \\
& =20
\end{aligned}
$$

Fred had $\$ 20$ left in the end.
$80-20=60$
Each set of game cards cost $\$ 60$.

Question 7

(a) $16+16+40=72$
$3 u=369-72$

$$
=297
$$

$$
1 u=297 \div 3
$$

$$
=99
$$

Maddie collected 99 seashells.
(b) $99+16=115$

Louisa collected 115 seashells.

Question 8

Items	Quantity of items	\times	Value of each unit (\$)	Total value (\$)
C	4	\times	$1 \mathrm{u}+6$	$4 \mathrm{u}+24$
W	6	\times	1 u	6 u
Total	10			$10 \mathrm{u}+24$

$10 u=124-24$

$$
=100
$$

$1 u=100 \div 10$
$=10$
Each walnut cake cost $\$ 10$.
$10+6=16$
Each cheesecake cost $\$ 16$.

Question 9

Actual number of Iollipops

$$
\begin{aligned}
\text { Gap } & =25+5 \\
& =30
\end{aligned}
$$

Difference between Case 1 and Case 2
= 3 lollipops per child

Question 9 (Cont.)

(a) $30 \div 3=10$

There were 10 children altogether.
(b) Number of Iollipops

Case 1: $10 \times 11-5=105$
Case 2: $10 \times 8+25=105$ (Checked)
There were 105 lollipops.

Question 10

$$
\begin{aligned}
2 u & =370-100 \\
& =270 \\
1 u & =270 \div 2 \\
& =135
\end{aligned}
$$

135 g of sand must be transferred from Bag X to Bag Y.

Question 11

At first

In the end

$2 u=12+76$
$=88$
$1 u=88 \div 2$
$=44$
Veronica had 44 stalks of roses in the end.
$44+88=132$
Nisa had 132 stalks of roses at first.

Question 12

Difference between Emma's age and Fatima's age

$$
\begin{aligned}
& =29-17 \\
& =12
\end{aligned}
$$

Question 12 (Cont.)

Now
E

17	12	
17	Difference	

? years ago (Past)

F
E

$1 u=12$
$17-12=5$
Fatima was twice as old as Fatima 5 years ago.

Chapter 2 Fractions

Answers to Unit 2.1 - Fractions Basics

Let's Get Started 2.1

1.

$\frac{2}{3}=\frac{14}{21} \quad \frac{1}{7}=\frac{3}{21}$
$\frac{14}{21}+\frac{3}{21}=\frac{17}{21}$
2.

2 poles $=\frac{21}{21}+\frac{21}{21}$

$$
=\frac{42}{21}
$$

Poles unpainted $=\frac{42}{21}-\frac{17}{21}$

$$
=\frac{25}{21}=1 \frac{4}{21}
$$

3.

$\frac{1}{3}=\frac{7}{21} \quad \frac{1}{7}=\frac{3}{21}$
Bryan painted $=\frac{7}{21}+\frac{3}{21}$
$=\frac{10}{21}$
Total poles painted $=\frac{7}{21}+\frac{10}{21}$

$$
=\frac{17}{21}
$$

4.

$$
\begin{array}{ll}
\frac{2}{3}=\frac{14}{21} & \frac{2}{7}=\frac{6}{21} \\
\text { Total painted } & =\frac{14}{21}+\frac{6}{21} \\
& =\frac{20}{21} \\
\text { Poles unpainted } & =\frac{42}{21}-\frac{20}{21} \\
& =\frac{22}{21}
\end{array}
$$

$$
\begin{aligned}
\frac{22}{21} \text { of the poles } & =57 \mathrm{~cm} \\
\frac{21}{21} \text { of the poles } & =57 \div \frac{22}{21} \\
& =57 \times \frac{21}{22} \\
& =\frac{1197}{22} \\
& =54.41 \mathrm{~cm}
\end{aligned}
$$

Ask Yourself

1. Make the denominator of $\frac{1}{6}$ and $\frac{1}{4}$ the same using the first common multiples of 6 and 4 .

Think Further

1. We will not be able to solve the problem sum as there is insufficient information given. To solve the sum, we will need to know the amount of money Karen's brother has.

Let's Practise 2.1

Question 1
$\frac{1}{5}=\frac{7}{35}$ (Friends)
$\frac{3}{7}=\frac{15}{35} \quad$ (Neighbours)
$\frac{7}{35}$ of the cookies $=56$
$\frac{1}{35}$ of the cookies $=56 \div 7$
$=8$
$\frac{15}{35}$ of the cookies $=8 \times 15$

$$
=120
$$

120 cookies were given to the neighbours.

Question 2

$\frac{1}{3}=\frac{3}{9}$ (Asia)
$\frac{4}{9}$ (Europe)
$\frac{3}{9}+\frac{4}{9}=\frac{7}{9} \quad($ Asia + Europe $)$
$1-\frac{7}{9}=\frac{2}{9}$ (America)
$\frac{7}{9}$ of the stamps $=84$
$\frac{1}{9}$ of the stamps $=84 \div 7$
$=12$
$\frac{2}{9}$ of the stamps $=2 \times 12$
$=24$
24 stamps are from America.

Question 3

(a) $\frac{3}{4}=\frac{21}{28}$ (Participants)
$\frac{1}{7}=\frac{4}{28}$ (Non-participants)
$\frac{21}{28}+\frac{4}{28}=\frac{25}{28}$
$1-\frac{25}{28}=\frac{3}{28}$ (Organisers)
$\frac{28}{28}$ of the people $=2800$
$\frac{1}{28}$ of the people $=2800 \div 28$
$=100$
$\frac{3}{8}$ of the people $=3 \times 100$
$=300$
There were 300 organisers.
(b) $\frac{4}{4}$ of the organisers $=300$
$\frac{1}{3}$ of the organisers female $=300 \div 4$
$=75$
75 of organisers were female.

Question 4

$\frac{3}{8}=\frac{15}{40}$ (Children)
$\frac{2}{5}=\frac{16}{40} \quad$ (Colleagues)
Difference between children + colleagues $=\frac{16}{40}-\frac{15}{40}$
$=\frac{1}{40}$
$\frac{1}{40}$ of the lemonade $=80$
$\frac{40}{40}$ of the lemonade $=80 \times 40$

$$
=3200
$$

Mrs Jones made $\mathbf{3 2 0 0} \mathbf{m \ell}$ of lemonade.

Question 5

$\frac{2}{3}=\frac{8}{12}$ (Cushion)
$\frac{1}{4}=\frac{3}{12}$ (Patchwork)
Total used for cushions and patchwork $=\frac{8}{12}+\frac{3}{12}$

$$
=\frac{11}{12}
$$

(a) $\frac{11}{12}$ of fabric $=22$

$$
\begin{aligned}
\frac{1}{12} \text { of fabric } & =22 \div 11 \\
& =2
\end{aligned}
$$

Question 5 (Cont.)
$\frac{12}{12}$ of fabric $=12 \times 2$

$$
=24
$$

Selina bought $\mathbf{2 4} \mathbf{m}$ of fabric.
(b) $\frac{4}{4}$ of fabric $=24$

$$
\frac{1}{4} \text { of fabric }=24 \div 4
$$

$$
=6
$$

Since Selina was left with 2 m of the fabric and she needed another m , she would need $=6 \mathrm{~m}-2 \mathrm{~m}=4 \mathrm{~m}$ Selina would need to buy another 4 m of the fabric.

Question 6

$\frac{1}{2}=\frac{5}{10}$ (Nuts)
$\frac{1}{5}=\frac{2}{10}$ (Fruit)
Fruit + Nut $=\frac{2}{10}+\frac{5}{10}$

$$
=\frac{7}{10}
$$

Original $=1-\frac{7}{10}$

$$
=\frac{3}{10}
$$

(a) $\frac{3}{10}$ of the total $=270$ $\frac{1}{10}$ of the total $=270 \div 3$

$$
=90
$$

$\frac{10}{10}$ of the total $=90 \times 10$

$$
=900
$$

There were 900 muffins.
(b) $\frac{6}{6}$ of total $=900$

$$
\frac{1}{6} \text { of total }=900 \div 6
$$

$$
=150
$$

There were 150 muffins left.

Answers to Unit 2.2 - Numerators the same

Let's Get Started 2.2
3.

Model-drawing approach

Unitary approach

Total C=8u
Total D $=15 u$
Total $=8 u+15 u$
$=23 u$
4.

Unitary approach
\(\left.\begin{array}{rl}\frac{5}{7} E=\frac{3}{5} F

\frac{15}{21} E=\frac{15}{25} F\end{array}\right] \quad\)| Total E |
| ---: |$=21 u \quad$| Total F | $=25 u$ |
| ---: | :--- |
| Total | $=21 u+25 u$ |
| | $=46 u$ |

Ask Yourself

1) The total number of boys is represented by the denominator 3.
2) No. It only means that the given fractions of the boys and girls are equal.

Think Further

1.

Total $B=9 u$
Total $G=10 u$
Total $=9 u+10 u$

$$
=19 \mathrm{u}
$$

Difference $=10 u-9 u$

$$
=1 u
$$

$1 u=15$
$19 u=19 \times 15$

$$
=285
$$

There were $\mathbf{2 8 5}$ children altogether.

Let's Practise 2.2

Question 1
$\left.\begin{array}{l}\frac{1}{2} S=\frac{3}{4} C \\ \frac{3}{6} S=\frac{3}{4} C\end{array}\right]$
Total S = 6u
Total C $=4 \mathrm{u}$
Total $=6 u+4 u$
$=10 u$
$10 u=60$
$1 u=60 \div 10$
$=6$
(a) $6 u=6 \times 6$
$=36$
There are $\mathbf{3 6}$ storybooks
(b) $2 u=2 \times 6$
$=12$
There are 12 more storybooks than comic books.

Question 2
$\left.\begin{array}{rl}\frac{1}{3} A=\frac{2}{3} C \\ \frac{2}{6} A=\frac{2}{3} C\end{array}\right] \quad \begin{aligned} \text { Total } A & =6 u \\ \text { Total } C & =3 u \\ \text { Total } & =6 u+3 u \\ & =9 u\end{aligned}$
$9 u=45$
$1 u=45 \div 9$

$$
=5
$$

$$
6 u=6 \times 5
$$

$$
=30
$$

There were $\mathbf{3 0}$ apple sweets.

Question 3

Orange Tiles
$\frac{2}{3}$ (Used) $\quad \frac{1}{3}$ (Left) $\frac{3}{3}$ (At first)
Blue Tiles
$\frac{1}{4}$ (Used) $\quad \frac{3}{4}$ (Left) $\quad \frac{4}{4}$ (At first)
Left
$\frac{1}{3} O=\frac{3}{4} B$
$\frac{3}{9} O=\frac{3}{4} B$$\quad \begin{aligned} \text { Total } O & =9 u \\ \text { Total } B & =4 u \\ \text { Total } & =9 u+4 u \\ & =13 u\end{aligned}$
$13 u=130$
$1 u=130 \div 13$

$$
\text { = } 10
$$

$3 u=3 \times 10$
$=30$
Chu Kang had $\mathbf{3 0}$ orange tiles in the end.

Question 4
Chickens
$\frac{3}{8}$ (Sold) $\quad \frac{5}{8}$ (Left) $\quad \frac{8}{8}$ (At first)
Ducks
$\frac{3}{5}$ (Sold) $\frac{2}{5}$ (Left) $\quad \frac{5}{5}$ (At first)
Left
$\frac{5}{8} \mathrm{C}=\frac{2}{5} \mathrm{D}$
$\frac{10}{16} C=\frac{10}{25} D$

Total	Sold $C=16 u$
	C $=16 u-10 u$ $=6 u$
D	$=25 u-10 u$

Difference $=15 u-6 u$

$$
=9 u
$$

Question 4 (Cont.)
$9 u=36$
$1 u=36 \div 9$
$=4$
Total sold $=6 u+15 u$
$=21 u$
$21 u=21 \times 4$
$=84$
Mr Lim sold 84 ducks and chickens.

Question 5
$\frac{1}{5} \mathrm{~J}=\frac{3}{4} \mathrm{~K}=\frac{2}{3} \mathrm{~L}$
$\frac{6}{30} \mathrm{~J}=\frac{6}{8} \mathrm{~K}=\frac{6}{9} \mathrm{~L}$$\quad \begin{aligned} \text { Total } \mathrm{J} & =30 \mathrm{u} \\ \text { Total } \mathrm{K} & =8 \mathrm{u} \\ \text { Total } \mathrm{L} & =9 \mathrm{u} \\ \text { Total } & =30 \mathrm{u}+8 \mathrm{u}+9 \mathrm{u} \\ & =47 \mathrm{u}\end{aligned}$
Difference $=9 u-8 u$

$$
=1 \mathrm{u}
$$

$1 u=9$
$47 \mathrm{u}=47 \times 9$

$$
=423
$$

The boys received $\$ 423$ from their uncle.

Question 6

\(\left.\begin{array}{l}\frac{3}{4} \mathrm{~L}=\frac{6}{7} \quad \mathrm{E}=\frac{4}{5} \mathrm{G}

\frac{12}{16} \mathrm{~L}=\frac{12}{14} \mathrm{E}=\frac{12}{15} \mathrm{G}\end{array}\right]\)| Total $\mathrm{L}=16 \mathrm{u}$ |
| :--- |
| Total $\mathrm{E}=14 \mathrm{u}$ |
| Total $\mathrm{G}=15 \mathrm{u}$ |

Difference $=16 u-14 u$
$2 \mathrm{u}=14$
$1 u=14 \div 2$
= 7
$16 u=16 \times 7$
$=112$ (Lucia)
$14 u=14 \times 7$
$=98$ (Eliza)
$15 u=15 \times 7$
$=105$ (Grace)
Lucia, Eliza and Grace collected 112, 98 and 108
leaves respectively.

Let's Get Started 2.3

Ask Yourself

1) Sylvia is repeated.
2) The units representing the repeated subject must be made the same.
Think Further
1.

Case 1
$S=2 u^{\times 3}(6 u)$
$C=5 u^{\times 3}(15 u)$

$\cdots=5{ }^{\text {c }}$ (15u)	$C=15 u$
Case 2	$\mathrm{J}=20 \mathrm{u}$
$C=3 u^{\times 5}(15 u)$	Total $=6 u+15 u+20 u$
$J=4 u^{\times 5}(20 u)$	$=41 \mathrm{u}$

$20 u=40$
$1 u=40 \div 20$
$=2$
Number of files Charmaine bought more than Sylvia
$=15 u-6 u$
$=9 \mathrm{u}$
$9 \mathrm{u}=9 \times 2$
$=18$
Charmaine bought 18 more files than Sylvia.

Let's Practise 2.3

Question 1

\(\left.\begin{array}{l}\begin{array}{l}Case 1

A=1 u

P=3 u

Case 2

A=1 u

O=2 u\end{array}\end{array}\right\}\)| $\underline{\text { Summary }}$ |
| :--- |
| $A=1 u$ |
| $P=3 u$ |
| $O=2 u$ |
| Total $=1 u+2 u+3 u$ |
| $=6 u$ |

$6 u=60$
$1 u=60 \div 6$
$=10$
$3 u=3 \times 10$
$=30$
There are $\mathbf{3 0}$ pears.

Question 2

Case 1
$M=2 u$
$L=3 u$
Case 2
$M=1 u^{\times 2}(2 u)$
$N=3 u^{\times 2}(6 u)$

Summary
$M=2 u$
$L=3 u$
$N=6 u$
Total $=2 u+3 u+6 u$
$=11 u$

Difference between Nathaniel and Michael
$=6 u-2 u$
$=4 \mathrm{u}$
$4 \mathrm{u}=44$
$1 u=44 \div 4$
$=11$
$11 u=11 \times 11$
= 121
They have a total of 121 cards.

Question 3

Case 1 $P=3 u^{\times 2}(6 u)$ $S=5 u^{\times 2}(10 u)$
Case 2 $S=2 u^{\times 5}(10 u)$ $T=3 u^{\times 5}(15 u)$$\quad$Summary $P=6 u$ $S=10 u$ $T=15 u$ $T o t a l$ $=6 u+10 u+15 u$ $=31 u$

Difference between Tess and Patrick $=15 u-6 u$
$9 u=63$
$1 u=63 \div 9$
$=7$

Question 6 (Cont.)

Kelvin and Marvin $=12 u+32 u$

$$
=44 \mathrm{u}
$$

Difference of Kelvin and Marvin with Lionel
$=44 u-21 u$
= 23u
$23 u=115$
$1 u=115 \div 23$
= 5
$21 u=21 \times 5$
$=105$
Lionel has 105 bullets.

Answers to Unit 2.4-Branching

Let's Get Started 2.4

1.

2.

Total number of muffins

3.

Ask Yourself

1. 'The keywords are 'of the remainder'.

Think Further

1.

Total number of balloons

$3 u=36$
$1 \mathrm{u}=36 \div 3=12$
$25 u=25 \times 12=300$
There were $\mathbf{3 0 0}$ balloons at the party.

Let's Practise 2.4

Question 1

Total amount of money

$1 u=5$
$7 \mathrm{u}=7 \times 5$

$$
=35
$$

He had \$35 at first.

Question 2

Question 2 (Cont.)
$\begin{aligned} \text { Difference } & =3 u-1 u \\ & =2 u\end{aligned}$
$2 u=60$
$1 u=60 \div 2$

$$
=30
$$

$7 u=7 \times 30$

$$
=210
$$

There were 210 pages in the novel.

Question 3

$5 u=25$
$1 u=25 \div 5$
$=5$
Difference $=4 u-1 u$
$=3 u$
$3 u=3 \times 5$
$=15$
He sold 15 more fish in the morning than in the
afternoon.

Question 4

$15 u=600$
$5 u=600 \div 3$

$$
=200
$$

Maureen had $\mathbf{2 0 0} \mathbf{g}$ of fish left.

Model-drawing approach

At first

Unitary approach
At first
$B=3 u^{\times 2}(6 u)$
$C=5 u^{x 2}(10 u)$
End
$B=6 u$
$C=7 u$
Change in the number of cakes $=10 u-7 u$

$$
=3 u
$$

$3 u=12$
$1 u=12 \div 3$
$=4$
3. What did not change? The amount of money Keith has.

Model-drawing approach

At first

Unitary approach

At first

$J=3 u^{x 5}(15 u)$
$K=7 u^{x 5}(35 u)$
End
$J=1 u^{x 7}(7 u)$
$K=5 u^{x 7}(35 u)$
$8 u=24$
$1 u=24 \div 8$
$=3$

Ask Yourself
1.
$\frac{\text { Increase in number of wine glasses }}{\text { Number of wine glasses at first }}=\frac{12}{3}$
$=4$
There were 3 times increased in the number of wine glasses compared to the number of wine glasses at first.

Let's Practise 2.5

Question 1
At first
$D=2 u$
$C=1 u$
End
$D=1 u^{\times 2}(2 u)$
$C=6 u^{\times 2}(12 u)$
Changes in $C=12 u-1 u$

$$
=11 u
$$

$11 u=22$
$1 u=22 \div 11$
$=2$
Total in the end $=12 u+2 u$

$$
=14 u
$$

$14 u=14 \times 2$
$=28$
There are $\mathbf{2 8}$ cakes in the end.

Question 2
At first
$M=4 u$
$F=5 u$
End
$M=1 u^{x 2}(4 u)$
$F=3 u^{\times 2}(12 u)$
Difference $=12 u-5 u$

$$
=7 \mathrm{u}
$$

$7 \mathrm{u}=28$
$1 u=28 \div 7$
$=4$
$12 u=12 \times 4$

$$
=48
$$

There were 48 female dancers in the CCA in the end.

Question 3

$$
\begin{aligned}
& \text { At first } \\
& P=2 u^{x 7}(14 u) \\
& M=3 u^{x 7}(21 u)
\end{aligned}
$$

Question 3 (Cont.)

End
$P=3 u^{\times 3}(9 u)$
$M=7 u^{\times 3}(21 u)$
Difference $=14 u-9 u$

$$
=5 u
$$

$5 u=25$
$1 u=25 \div 5$
= 5
$14 \mathrm{u}=14 \times 5$
$=70$ (P at first)
$21 u=21 \times 5$

$$
=105 \text { (M at first) }
$$

$70+105=175$
Heidi has $\mathbf{1 7 5}$ stamps altogether in both boxes at first.

Question 4
At first

$B=3 u^{\times 3}(9 u)$	$C=3 u^{\times 8}(24 u)$
$G=5 u^{\times 3}(15 u)$	$A=1 u^{\times 8}(8 u)$
$C=8 u^{\times 3}(24 u)$	

$C=8 u^{\times 3}(24 u)$

End
$C=4 \mathrm{u}^{\mathrm{x}}(24 \mathrm{u})$
$A=1 u^{\times 6}(6 u)$
Difference $=8 u-6 u$

$$
=2 u
$$

$2 u=28$
$1 u=28 \div 2$
$=14$
Difference (end) $=24 u-6 u$

$$
=18 u
$$

$18 u=18 \times 14$

$$
\text { = } 252
$$

There were $\mathbf{2 5 2}$ more children than adults in the end.

Question 5

At first
$C=2 u$
$R=3 u$
End
$C=1 u^{\times 2}(2 u)$
$R=4 u^{\times 2}(8 u)$
Difference $=8 u-3 u$

$$
=5 u
$$

$5 u=35$
$1 u=35 \div 5$
$=7$

$$
3 u=3 \times 7
$$

$$
=21
$$

There were $\mathbf{2 1}$ stalks of roses in the basket.

Question 6

At first
$T=2 u^{\times 5}(10 u)$
$S=5 u^{x 5}(25 u)$
End
$T=5 u^{\times 2}$ (10u)
$S=4 u^{\times 2}(8 u)$

Change in $S=25 u-8 u$

$$
=17 \mathrm{u}
$$

$17 u=51$
$1 u=51 \div 17$

$$
=3
$$

$10 u=10 \times 3$

$$
=30
$$

There were 30 teachers at the hall.

Answers to Unit 2.6 - Difference Unchanged

Let's Get Started 2.6
3. What remained the same? The age difference between Ethan and his mother.

Model-drawing approach

12 years ago

Now
E
M

Unitary approach

12 years ago
$E=2 u$
$M=3 u$
Difference $=1 \mathrm{u}$
Now
$E=3 u$
$M=4 u$
Difference $=1 \mathrm{u}$
$1 \mathrm{u}=12$
4. What remained the same?

Difference between Basket A and Basket B

Model-drawing approach

At First

End

Unitary approach

At first

$A=5 u^{x 5}(25 u)$
$B=7 u^{\times 5}(35 u)$
Difference $=2 u^{\times 5}(10 u)$
End
$A=3 u^{x 2}(6 u)$
$B=8 u^{x 2}$ (16u)
Difference $=5 u^{\times 2}(10 u)$
$19 u=95$
$1 u=95 \div 17$
$=5$

Let's Learn 2.6

Ask Yourself

1. Jonathan cannot be $\frac{3}{5}$ as old as Diana at every stage of their life since their age differs and at every stage of comparison the numerator and denominator will not be the same.

Think Further

$J=2 u$
$D=1 u$
Difference $=1 \mathrm{u}$
$1 \mathrm{u}=12$
$12-3=9$
In 9 years time.

Let's Practise 2.6
Question 1

34 years ago $W=2 u^{\times 2}(4 u)$	Now
$R=9 u^{\times 2}(18 u)$	$\mathrm{W}=3 u^{\times 7}(21 u)$
Difference $=7 u^{\times 2}(14 u)$	Difference $=2 u^{\times 7}(14 u)$

$17 u=34$
$1 u=34 \div 17$
$=2$
$35 u=35 \times 2$

$$
=70
$$

Uncle Roy is 70 years old now.

Question 2

15 years ago $S=1 u$	Now
$E=5 u$	$E=1 u^{\times 4}(4 u)$
Difference $=4 u$	Difference $=1 u^{\times 4}(4 u)$

$3 u=15$
$1 u=15 \div 3$
$=5$
$4 u=4 \times 5$

$$
=20
$$

$$
31+20=51
$$

Eileen would be 51 years old when Samuel was 31
years old.

Question 3

Now	Future
$R=3 u^{\times 3}(9 u)$	$R=5 u^{\times 4}(20 u)$
$F=7 u^{\times 3}(21 u)$	$F=8 u^{\times 4}(32 u)$
Difference $=4 u^{\times 3}(12 u)$	Difference $=3 u^{\times 4}(12 u)$

$12 u=24$
$1 u=24 \div 12$
$=2$
Number of years later $=20 u-9 u$

$$
=11 u
$$

$11 u=11 \times 2$
$=22$
In 22 years' time, Roger will be $\frac{5}{8}$ as old as his father.

Question 4

At first		End	
Tin	$=3 u^{\times 3}(9 \mathrm{u})$	Tin	$=2 u^{\times 2}(4 u)$
Plastic	$=5 u^{\times 3}(15 u)$	Plastic	$=5 u^{\times 2}$ (10u)
Difference	$=2 u^{\times 3}(6 u)$	Difference	$=3 u^{\times 2}(6 u)$
$5 \mathrm{u}=150$			
$1 \mathrm{u}=150$			
$=30$			
$15 \mathrm{u}=15 \times$			
$=450$			
The mass	of the plastic	at first is 45	

Question 5

$\underline{\text { At first }}$	End
$B=5 u^{\times 5}(25 u)$	$B=4 u^{\times 3}(12 u)$
$C=8 u^{\times 5}(40 u)$	$C=9 u^{\times 3}(27 u)$
Difference $=3 u^{\times 5}(15 u)$	Difference $=5 u^{\times 3}(15 u)$
Difference in the button pins at first and at the end =	

Difference in the button pins at first and at the end = 13u

Jennifer gave away $\frac{13}{25}$ of the button pins.

Question 6

Clint	Emma
At first $\quad=6 u^{\times 4}(24 u)$	At first $\quad=7 \mathrm{u}^{\times 5}(35 \mathrm{u})$
End $\quad=1 u^{x 4}(4 u)$	End $\quad=3 u^{\times 5}(15 u)$
Difference $=5 u^{\times 4}(20 u)$	Difference $=4 u^{\times 5}(20 u)$
$20 \mathrm{u}=40$	
$1 u=40 \div 20$	
$=2$	
$24 \mathrm{u}=24 \times 2$	
$=48$ (Clint at first)	
$35 \mathrm{u}=35 \times 2$	
$=70$ (Emma at first)	

Clint and Emma had \$48 and \$70 respectively at first.

Chapter 3 Geometry

Answers to Unit 3.1 - Perpendicular and Parallel

Question 4

Square

Question 6
Octagon

Answers to Unit 3.2 - Angles

Let's Practice 3.2

Question 1

Question 2
(a) 100°
(b) 100°
(c) 80°
(d) 80°
(e) 180°
(f) 180°

Question 3
(a) 200°
(b) 52°

Question 6

$\angle B C D=35^{\circ}$

Answers to Unit 3.3-8-Point Compass

Let's Get Started

1.

2. North
3. South
4. $\frac{3}{8}$
5. East
6. 135

Let's Learn

1. 90° to their right for the school that is on the West.
2. The Bakery
3. The Market
4. 225 turn

Think Further

1. 90° to their right for the school that is on the North.
2. The Bakery
3. The Market
4. 315 turn

Let's Practice 3.3

Question 1

(a) Home
(b) Sports hall
(c) Sports hall
(d) Club
(e) $\frac{\mathbf{1}}{\mathbf{8}}$ - turn to her right $/ \frac{7}{8}$ - turn to her left
(f) $\frac{3}{8}$ - turn to her left $/ \frac{5}{8}$ - turn to her right

Question 2

(a) Toy section
(b) Electrical section
(c) $\frac{3}{8}$ - turn to his right $/ \frac{5}{8}-$ turn to his left
(d) Shoes section
(e) Toy section
(f) 315°

Question 3

(a) Art Room, South
(b) Canteen, Southeast
(c) Art Room, Northeast
(d) Basketball Court, Auditorium
(e) $\frac{\mathbf{3}}{\mathbf{8}}$ - turn to her right $/ \frac{5}{\mathbf{8}}$ - turn to her left, East
(f) 90° anticlockwise turn / 270° clockwise turn. Northwest

Question 4

(a) Theatre, West
(b) Supermarket South
(c) Temple, Northwest
(d) MRT station, Temple
(e) $\frac{5}{8}$ - turn to his right / $\frac{3}{8}$ - turn to his left, South
(f) 180 clockwise turn to the left / 180 anticlockwise turn to right, Northeast

Question 5

(a) Dewi
(b) Barbara, Canns and Ian
(c) Ian
(d) Canns, Barbara and Florence

Question 6
(a) 1 square South, followed by 1 square Southeast
(b) Fire station

Chapter 4 Symmetry and Tessellation
Answers to Unit 4.1 - Identifying Symmetrical

Let's Get Started 4.1

Let's Practise 4.1
Question 1

Question 2

Question 3

Answers to Unit 4.2 - Forming Symmetrical Figure
Let's Practice 4.2
Question 1

Question 2

Question 3

Question 4

Question 5

Question 6

Question 7

Question 8

Question 10

Page 31
For more review questions, please visit www.onsponge.com

Let's Practice 4.3

Question 1

Question 2

Question 3

Question 4

Question 5

Question 6

Answers to Unit 4.4 - Tessellation
Let's Practise 4.4

Question 1

Page 33
For more review questions, please visit www.onsponge.com

Chapter 5 Decimals

Answers to Unit 5.1 - Decimals

Let's Get Started 5.1

1. (a) 6.58	(b) 78.9	(c) 0.079
2. (a) 0.7	(b) 0.6	(c) 0.12
3. tenth		
4. hundredth		
5. 0.5		
6. 0.8		
7. (a) 8.3	(b) 16.5	$\begin{array}{lll}\text { (c) } 18.3 & \text { (d) } 25.0\end{array}$
8. (a) 5.26	(b) 25.65	(c) 46.74 (d) 65.28
9. $0.325,0.6$	0.8, 0.91	
10. (a) 6.853	(b) 4.458	

Let's Practise 5.1

Question 1

2.74L

Question 2
 \$15.49

Question 3
$\$ 86.0$

Question 4

3 m long, 2 m wide

Question 5

3.9 kg

Question 6

27.1

Let's Get Started 5.2

1.

(a) 8.9
$\begin{array}{ll}\text { (b) } 2.49 & \text { (c) } 7.2\end{array}$
(d) 0.9
$\begin{array}{ll}\text { (e) } 1.29 & \text { (f) } 123.47\end{array}$
2.
(a) 2.1
(b) 3.33
(c) 0.05
(d) 8.8

Let's Practise 5.2

Question 1

\$15.70 + \$2.80 = \$18.50
The DVD and market cost $\$ 18.50$.
\$20-\$18.50 = \$1.50
He would receive $\$ 1.50$ change.

Question 2

$\$ 18.50+\$ 25.80+\$ 28.30=\$ 72.60$
They had a total of $\$ 72.60$.
$\$ 84-\$ 72.60=\$ 11.40$
They needed \$11.40 more.

Question 3

$\$ 3.50+\$ 2.10+\$ 2.60=\$ 8.20$
Robin spent a total of $\$ 8.20$
$\$ 18-\$ 8.20=\$ 9.80$
She would have $\$ 9.80$ left.

Question 4

$\$ 55.50-\$ 19.75=\$ 35.75$
Both items cost \$35.75.
\$35.75-\$25.65 = \$10.10
The pencil case cost $\$ 10.10$.

Question 5
\$60 - \$45.95 = \$14.05
Natalie had $\$ 14.05$ after buying a bag.
$\$ 14.05+\$ 20=\$ 34.05$
Natalie saved a total of $\$ 34.05$.

Question 6
$\$ 389.75+\$ 150.80+\$ 45.30=\$ 585.85$
Chester spent a total of $\$ 585.85$
$\$ 750-\$ 585.85=\$ 164.15$
Chester had \$164.15 left.

Let's Get Started 5.3

1.

(a) 1.8
(b) 3.25
(c) 13.6
(d) 28.56
2.
(a) 0.23
(b) 1.67
(c) 1.3
(d) 1.225
3.
(a) 2.5
(b) 7.1
(c) 4.7
(d) 12.5
(e) 27.5
(f) 22.6
4.
(a) 0.5
(b) 1.1
(c) 0.6
(d) 3.1
(e) 2.6
(f) 1.4

Let's Practise 5.3

Question 1

$\$ 425.60 \times 6=\$ 2553.60$
His family would receive $\mathbf{\$ 2 5 5 3 . 6 0}$.

Question 2

$\$ 5.35 \times 4=\$ 21.40$
Melissa paid $\mathbf{\$ 2 1 . 4 0}$.

Question 3

$\$ 65.30 \times 5=\$ 326.50$
He would receive $\$ \mathbf{3 2 6 . 5 0}$.

Question 4

$3.62 \mathrm{~m} \times 7=25.34 \mathrm{~m}$
Mrs Lim bought 25.34 m of carpet.

Question 5

$\$ 315 \div 7=\$ 45$
His daily wage is $\$ 45$.

Question 6

$\$ 23.40 \div 9=\$ 2.60$
Each hair clip cost \$2.60.

Question 7

$3.75 \mathrm{~kg} \div 3=1.25 \mathrm{~kg}$
Each packet contains 1.25 kg of sugar.

Question 8

\$4.80 x 4 = \$19.20
4 notebooks cost $\$ 19.20$
$\$ 55-\$ 19.20=\$ 35.80$
He had $\$ 35.80$ left after buying notebooks.
$\$ 35.80-\$ 21=\$ 14.80$
$\$ 14.80 \div 8=\$ 1.85$
Each pencil cost $\$ 1.85$.

Question 1

$7.46+3.7=11.16$
The tank can hold 11.16 litres of water.
$11.16+7.46=18.62 \approx 18.6 \ell$
Both containers can hold 18.6ℓ of water.

Question 2

Case 1
$T=4 u^{\times 4}(16 u)$
$B=5 u^{\times 4}(20 u)$
Summary
$T=16 u$
$B=20 u$
Case 2
Total $=16 u+20 u+5 u$
$P=1 u^{\times 5}(5 u)$
$B=4 u^{\times 5}(20 u)$

$$
=41 u
$$

Difference between batteries and tissue pack
$=20 u-16 u$
$=4 \mathrm{u}$
$4 u=24$
$1 u=24 \div 4$
$=6$
$5 u=5 \times 6$
$=30$
Heidi bought 30 paper clips.

Question 3

Case 1
$T=2 u^{\times 3}(6 u)$
$C=5 u^{\times 3}(15 u)$
Summary

$$
T=6 u
$$

$C=15 u$
$\underline{\text { Case } 2}$
$\begin{aligned} & T=3 u^{\times 2}(6 u) \\ & K=10 u^{\times 2}(20 u)\end{aligned}$$\left\{\begin{array}{l}K=20 u \\ \text { Total }=6 u+15 u+20 u \\ =41 u\end{array}\right.$
Difference between Clair and Timothy $=15 u-6 u$

$$
=9 u
$$

$9 u=54$
$1 u=54 \div 9$
= 6
$20 u=20 \times 6$

$$
=120
$$

120 books on the shelf belonged to Kristine.

Question 4

Case 1
$\left.\begin{array}{l}\text { Case } 1 \\ A=3 u^{\times 10}(30 u) \\ B=2 u^{\times 10}(20 u) \\ \text { Case } 2 \\ A=10 u^{\times 3}(30 u) \\ C=7 u^{\times 3}(21 u)\end{array} \quad \begin{array}{l}\text { Summary } \\ A=30 u \\ B=20 u \\ C=21 u \\ \text { Total }=30 u+20 u+21 u \\ =71 u\end{array}\right]$

Difference between Pouch B and Pouch C
$=21 u-20 u$
$=1 u$
$1 u=160$
$71 u=71 \times 160$

$$
=11360
$$

The mass of the bag of seeds is $11 \mathrm{~kg} \mathrm{360} \mathbf{~ g}$.

Question 5

$$
\begin{aligned}
4 u & =10.8 \\
1 u & =10.8 \div 4 \\
& =2.7 \\
2 u & =2 \times 2.7 \\
& =5.4
\end{aligned}
$$

There were $\mathbf{5 . 4}$ litres of sauce left.

Question 6

$$
\begin{aligned}
6 u & =3.9 \\
1 u & =3.9 \div 6 \\
& =0.65 \\
20 u & =20 \times 0.65 \\
& =13
\end{aligned}
$$

He had 13 kg of rice at first.

Question 7

Difference between computer game and board game

$$
\begin{aligned}
=12 u-5 u \\
=7 u
\end{aligned} \begin{aligned}
7 u & =41.65 \\
1 u & =41.65 \div 7 \\
& =5.95 \\
3 u & =5.95 \times 3 \\
& =17.85
\end{aligned}
$$

Caleb had \$17.85 left.

Question 8

$10 u=1840$
$1 u=1840 \div 10$

$$
=184
$$

$$
3 u=3 \times 184
$$

$$
=552
$$

Mr Imran spent $\$ 552$ on bills.

Question 9

$3 u=0.48$
$1 u=0.48 \div 3$

$$
=0.16
$$

$$
2 u=2 \times 0.16
$$

$$
\text { = } 0.32 \text { (Flour) }
$$

The mass of each sack of flour is $\mathbf{0 . 3 2} \mathbf{~ k g}$ and each packet of sugar is $0.16 \mathbf{k g}$.

.Question 10

Cotton
Silk

$2 C=2 \times 3 u$
$=6 u$
$3 S=3 \times 1 u$
$=3 u$
$2 C+3 S=6 u+3 u$
$=9 u$
$9 u=1.8$
$1 u=1.8 \div 9$

$$
=0.2
$$

The length of each silk ribbon is $\mathbf{0 . 2 m}$.
\qquad
Question 11

Item	Quantity of units	\times	Value of each unit (\$)	Total Value (\$)
E	4 u	\times	1.5	6 u
F	1 u	\times	1	1 u
Total	5 u			7 u

$7 u=14$
$1 u=14 \div 7$

$$
=2
$$

$6 u=6 \times 2$

$$
=12
$$

She paid $\$ 12$ for the egg tarts.
\qquad

Question 12

Item	Quantity of units	\times	Value of each unit (items)	Total Value (items)
S	3 u	\times	25	75 u
P	4 u	\times	20	80 u
Total	7 u			155 u

Difference $=80 u-75 u$
$5 u=160$
$1 u=160 \div 5$

$$
=32
$$

$3 u=3 \times 32$

$$
=96
$$

There are 96 boxes of screws.

Chapter 6 Graphs

Answers to Unit 6.1 - Interpreting Graphs

6.1 Interpreting Graphs

Table 1
(i) Class 4 Courageous
(ii) Class 4 Courageous and Class 4 Honesty

Question 13

Item	Quantity of units	\times	Value of each item (\$)	Total Value (\$)
R	3 u	\times	2.5	7.5 u
G	2 u	\times	1.25	2.5 u
Total	5 u			10 u

$$
\begin{aligned}
& 10 u=120 \\
& \begin{aligned}
1 u & =120 \div 10 \\
& =12
\end{aligned}
\end{aligned}
$$

Difference $=3 u-2 u$

$$
=1 u
$$

The customer bought 12 more boxes of red than green lamp bulbs.

Question 14

Item	Quantity of units	\times	Value of each unit (m)	Total (\mathbf{m})
S	5 u	\times	0.2	1 u
L	1 u	\times	2.0	2 u
Total	6 u			3 u

$3 u=12$
$1 u=12 \div 3$
$=4$
$6 u=4 \times 6$
$=24$
Joash used 24 tubes in all.
(iii) 158 pupils

Table 2
(i) 13 girls
(ii) 57 girls +75 boys $=132$ pupils
(iii) 0 girls +5 boys $=5$ pupils

Let's Practise 6.1

Question 1

(a) 625 cups of sugar cane juice
$123+212+112+178=625$
(b) $\$ 469$
$179+290=469$
(c) Stall A and C

Stall $A=123+56$

$$
=179
$$

Stall B $=212+78$
$=290$
Stall C $=112+67$

$$
=179
$$

Stall D $=178+61$ $=239$
(d) $\$ 262$
$56+78+67+61=262$
All the shops sold a total of 262 cups of orange juice. $262 \times 1=262$

Question 2
(a) $\$ 2140$
$450+420+420+430+420=2140$
(b) $\$ 30$

Total amount $(\operatorname{Max})=450$
Total amount $(\mathrm{Min})=420$
Difference $=450-420$

$$
=30
$$

(c) 210 plates
$420 \div 2=210$
(d) 70 plates

Number of plates of curry rice sold $=1 \mathrm{u}$
Number of plates of duck noodles sold $=2 u$
Total plates sold $=3 u$
$210 \div 3=70$

Question 3

(a) $\$ 8$

Using Monday data,
total tickets sold $=1300+650$

$$
=1950
$$

Cost of a ticket $=15600 \div 1950$
$=8$

Question 3 (Cont.)

(b) $\$ 26800$
$(750+600+2000) \times 8=26800$
(c) $\$ 70800$
$32000+38800=70800$
(d) 150 people

Total people on Sunday $=38800 \div 8$

$$
=4850
$$

Total people for Movie A and Movie B (Sun)
= 4850-3500
$=1350$
Movie $A($ Sun $)=1 u$
Movie B (Sun) $=8 u$
$9 \mathrm{u}=1350$
$1 u=1350 \div 9$
$=150$
(e) I would replace Movie A.

The number of people has decreased to 150 .

Missing information from the table,
Movie B (Sun) $=8 \times 150$

$$
=1200
$$

Total people on Saturday $=32000 \div 8$

$$
=4000
$$

Total people for Movie B (Sat) $=4000-2700-300$

$$
=1000
$$

Question 4

(a) $\$ 5$

Using Laundromat data,
Total mass $=200+200+150+20=570$
For Laundromat, Cost to wash 1 kg of laundry
$=\frac{\text { Total amount collected }}{\text { Total mass }}$
$=\frac{2850}{570}$
$=5$
(b) 85 kg

For Drydays, total mass of laundry
$=2400 \div 5$
$=480$
Mass of socks (Drydays) $=480-150-220-100$

$$
=10
$$

Total mass of socks (all 5) $=10+20+15+30+10$

$$
=85
$$

Question 4 (Cont.)

(c) 100 kg

For Evergreen, total mass of laundry
$=1750 \div 5$
= 350
Mass of blouses and shirts (Evergreen)
= 350-170-30
= 150
Since the mass of blouses is 2 times of the mass of shirts, mass of blouses is $\frac{2}{3} \times 150=100$
(d) $\$ 15675$
$(100+150+150+15) \times 5=2075$
CleanFast collected a total of $\$ 2075$.
$(140+270+900+10) \times 5=6600$
QuickSpin collected a total of $\$ 6600$.
$2400+2850+2075+1750+6600=15675$
(e) 850 kg

Most shirts washed $=900$
Least shirts washed $=50$
Biggest Difference $=900-50$

$$
=850
$$

Question 5

(a) $\$ 3$

For Edmund, Amount spent on pencils + Amount spent on erasers + Amount spent on files $=\$ 23.80$ $6 \times 0.30+2 \times 0.50+$ Amount spent on files $=23.80$
$23.80-1.80-1.00=21$
$\$ 21$ was spent on the files.
$21 \div 7=3$
(b) $\$ 33.50$
$5 \times 0.30+4 \times 0.50+10 \times 3=33.50$
(c) 5 files

For Cathy, Amount spent on pencils + Amount spent on erasers + Amount spent on files $=\$ 17.90$
$17.90-2.40-0.50=15$
She spent $\$ 15$ on files.
$15 \div 3=5$

Question 5 (Cont.)

(d) Brian

Number of files $($ Brian $)=14-11-2$
$=1$
Brian $=11 \times 0.30+2 \times 0.50+1 \times 3$ $=7.30$
Cathy $=8 \times 0.30+1 \times 0.50+5 \times 3$

$$
\text { = } 17.90
$$

(e) $\$ 98.10$

$$
\begin{aligned}
\text { Abel } & =17 \times 0.30+3 \times 0.50+3 \times 3 \\
& =15.60 \\
15.60 & +7.30+17.90+33.50+23.80=98.10
\end{aligned}
$$

Answers to Unit 6.2 - Line Graphs

Let's Practise 6.2

Question 1
(a) 9 a.m.
(b) 6 a.m.
(c) $\mathbf{5 2 0 0}$ cars

Number of cars from 6 a.m. to 11 a.m.
$=100+500+1300+1700+900+700$
$=5200$
(d) 7 a.m. to 8 a.m.
(e) 10 a.m. to 11 a.m.

Question 2

(a) 134
(b) May
(c) Jan to Feb, Feb to Mar

Jan to Feb = increase by 22
Feb to Mar = increase by 22
Mar to Apr = decrease by 27
Apr to May = increase by 72
May to June = decrease by 25
(d) 908
$112+134+156+129+201+176=908$
(e) April

Question 3

(a) $14^{\circ} \mathrm{C}$
(b) $20^{\circ} \mathrm{C}$
(c) 7:30 a.m.
(d) $\mathbf{3 0}$ minutes

When temperature $=14^{\circ} \mathrm{C}$, Time is 7.40 a.m.

Question 3 (Cont.)

When temperature $=20^{\circ} \mathrm{C}$, Time is 8.10 a.m.
Elapsed time $=10+20$

$$
=30
$$

(e) $13.5^{\circ} \mathrm{C}$
$21.5^{\circ} \mathrm{C}-8^{\circ} \mathrm{C}=13.5^{\circ} \mathrm{C}$

Question 4

(a) 270 litres
(b) 230 litres

Amount of water at 10 a.m. - Amount of water at 9
a.m. $=450-220=230$
(c) $12.30 \mathrm{p} . \mathrm{m}$.
(d) 4 h 30 min

1st time at 285 litres, time is 7 a.m.
2nd time at 285 litres, Time is 11:30 a.m.
Elapsed time is 4 h 30 min .
(e) 10 a.m. to 11 a.m., 12 noon to 1 p.m.

7 a.m. to 8 a.m. (decrease by 15 litres)
8 a.m. to 9 a.m. (decrease by 50 litres)
9 a.m. to 10 a.m. (increase by 230 litres)
10 a.m. to 11 a.m. (decrease by 130 litres)
11 a.m. to 12 noon. (decrease by 70 litres)
12 noon to 1 p.m. (decrease by 130 litres)

Question 5

(a) 1700 houses

Increase from 2008 to $2009=1200-1100$

$$
\begin{aligned}
& =100 \\
\text { Increase from } 2009 \text { to } 2010 & =5 \times 100
\end{aligned}
$$

$$
=500
$$

Number of private houses sold in 2010
$=1200+500=1700$
(b) 2000 houses

Number of private houses sold in 2011
$=2 \times$ number of private houses sold in 2012
$=2 \times 1000$
$=2000$
(c) Years 2009 and 2013
$2008=1100$
$2009=1200$
$2010=1700$
$2011=2000$
$2012=1000$
$2013=1200$

Question 5 (Cont.)

(d) 5900 houses

Total number of houses (2010 to 2013)
$=1700+2000+1000+1200$
$=5900$

Question 6

(a) 00:00:06
(b) 8 m
(c) 00:00:08
(d) $\mathbf{1 0}$ seconds

1st time ball is at $7 \mathrm{~m}-00: 00: 04$
2nd time ball is at $7 \mathrm{~m}-00: 00: 14$
Time elapsed $=14-4$

$$
=10
$$

(e) 8 seconds

Ball is at $0 m-00: 00: 08$
Ball increases height to $7.5 \mathrm{~m}-00: 00: 16$
Time elapsed $=16-8$

$$
=8 \mathrm{~s}
$$

(f) $\quad 15.5 \mathrm{~m}$

The ball falls from 10 m to ground $(00: 00: 08)=10 \mathrm{~m}$
The ball bounces from ground to $5.5 \mathrm{~m}(00: 00: 12)$

$$
\begin{aligned}
& =5.5 \mathrm{~m} \\
& \begin{aligned}
\text { Total } & =10+5.5 \\
& =15.5
\end{aligned}
\end{aligned}
$$

Chapter 7 Area and Perimeter

Answers to Unit 7.1

Let's Practise 7.1

Question 1

(a) Area of Square A $=9 \mathrm{~cm} \times 9 \mathrm{~cm}$ $=81 \mathrm{~cm}^{2}$

Perimeter of Square A $=4 \times 9 \mathrm{~cm}$

$$
=36 \mathrm{~cm}
$$

(b) Area of Rectangle B $=8 \mathrm{~m} \times 4 \mathrm{~m}$

$$
=32 \mathrm{~m}^{2}
$$

Perimeter of Rectangle $B=8 m+4 m+8 m+4 m$

$$
=24 \mathrm{~m}
$$

Question 1 (Cont.)

$$
\text { (c) } \begin{aligned}
\text { Area of Rectangle } C & =17 \mathrm{~m} \times 9 \mathrm{~m} \\
& =153 \mathrm{~m}^{2}
\end{aligned} \quad \begin{aligned}
& \text { Perimeter of Rectangle } C \\
&= 17 \mathrm{~m}+9 \mathrm{~m}+17 \mathrm{~m}+9 \mathrm{~m} \\
&= 52 \mathrm{~m}
\end{aligned}
$$

Question 2
(a) Length of Square $\mathrm{A}=2 \times 6 \mathrm{~cm}$

$$
=12 \mathrm{~cm}
$$

Perimeter of Square A $=4 \times 12 \mathrm{~cm}$

$$
=48 \mathrm{~cm}
$$

Area of Square A $=12 \mathrm{~cm} \times 12 \mathrm{~cm}$
$=144 \mathrm{~cm}^{2}$
(b) Length of Rectangle B $=2 \times 11 \mathrm{~cm}$

$$
=22 \mathrm{~cm}
$$

Breadth of Rectangle $B=2 \times 2 \mathrm{~cm}$

$$
=4 \text { cm }
$$

Perimeter of Rectangle B
$=22 \mathrm{~cm}+4 \mathrm{~cm}+22 \mathrm{~cm}+4 \mathrm{~cm}$
$=52 \mathrm{~cm}$
Area of Rectangle $B=22 \mathrm{~cm} \times 4 \mathrm{~cm}$

$$
=88 \mathrm{~cm}^{2}
$$

Question 3

Area of the unpaved region $=14 \mathrm{~m} \times 14 \mathrm{~m}$

$$
=196 \mathrm{~m}^{2}
$$

Perimeter of pavement
$=16 m+16 m+2 m+2 m+14 m+14 m$
$=64 \mathrm{~m}$

Question 4

(a) $2 \times$ length of field $=20 \mathrm{~m}+20 \mathrm{~m}$

$$
=40 \mathrm{~m}
$$

$2 \times$ breadth of field $=64 \mathrm{~m}-40 \mathrm{~m}$

$$
=24 \mathrm{~m}
$$

$$
\text { Breadth of field } \quad=24 \mathrm{~m} \div 2
$$

$$
=12 \mathrm{~m}
$$

The breadth of the field is $\mathbf{1 2} \mathbf{~ m}$.

Question 2 (Cont.)

(b) Perimeter of garden $=64 \mathrm{~m} \div 2$

	$=32 \mathrm{~m}$
Length of garden	$=32 \mathrm{~m} \div 4$
	$=8 \mathrm{~m}$
Area of garden	$=8 \mathrm{~m} \times 8 \mathrm{~m}$
	$=64 \mathrm{~m}^{2}$

The area of the garden is $\mathbf{6 4} \mathbf{m}^{2}$.

Question 5

Length of $C D=2 u$.
Distance covered walked by the ant $=2 u+2 u+1 u$

$$
=5 u
$$

$5 u=37.5$
$1 u=37.5 \div 5$
$=7.5$
$2 u=2 \times 7.5$

$$
=15
$$

The length of the paper is 15 cm .
(a) $15 \mathrm{~cm} \times 15 \mathrm{~cm}=225 \mathrm{~cm}^{2}$

The area of the paper is $\mathbf{2 2 5} \mathbf{~ c m}^{2}$.
(b) $4 \times 15 \mathrm{~cm}=60 \mathrm{~cm}$

The perimeter of the paper is $\mathbf{6 0} \mathbf{~ c m}$.

Question 6

Let the length of each square be 1 u . Total length of wire $=1 u+3 u+1 u+3 u$
$=8 u$
$8 u=96$
$1 u=96 \div 8$
$=12$
(a) Length of line $A D$ is $\mathbf{1 2} \mathbf{~ c m}$.
(b) $3 u=3 \times 12$
$=36$
$36 \mathrm{~cm} \times 12 \mathrm{~cm}=432 \mathrm{~cm}^{2}$
The area of Rectangle ABCD is $432 \mathbf{~ c m}^{2}$.

Answers to Unit 7.2

Let's Practise 7.2

Question 1

(a)

Area of Square $A=1 u \times 1 u$
$1 u \times 1 u=49(7 \times 7)$
$1 \mathrm{u}=7$
Length of Square $A=7 \mathbf{c m}$
Perimeter of Square A $=4 \times 7 \mathrm{~cm}$

$$
=28 \mathrm{~cm}
$$

(b)

Length of Rectangle B $=84 \mathrm{~m}^{2} \div 8 \mathrm{~m}$

$$
=10.5 \mathrm{~m}
$$

Perimeter of Rectangle $B=(10.5 \mathrm{~m} \times 2)+(8 \mathrm{~m} \times 2)$

$$
=37 \mathrm{~m}
$$

(c)

Area of Square $C=1 u \times 1 u$
$1 u \times 1 u=25(5 \times 5)$
$1 u=5$
Length of Square C $=5 \mathrm{~cm}$
Perimeter of Square C $=4 \times 5 \mathrm{~cm}$

$$
=20 \mathrm{~cm}
$$

Question 2

(a)

$$
\begin{aligned}
2 \times \text { breadth } & =2 \times 14 \mathrm{~cm} \\
& =28 \mathrm{~cm} \\
2 \times \text { length } & =78 \mathrm{~cm}-28 \mathrm{~cm} \\
& =50 \mathrm{~cm}
\end{aligned}
$$

Length of Rectangle $D=50 \mathrm{~cm} \div 2$

$$
=25 \mathrm{~cm}
$$

$$
\text { Area of Rectangle } D \quad=25 \mathrm{~cm} \times 14 \mathrm{~cm}
$$

$$
=350 \mathrm{~cm}^{2}
$$

(b)

$$
\begin{aligned}
& \text { Length of Square } \mathrm{E}=24 \mathrm{~cm} \div 4 \\
& =6 \mathrm{~cm} \\
& \text { Area of Square E }=6 \mathrm{~cm} \times 6 \mathrm{~cm} \\
& =36 \mathrm{~cm}^{2} \\
& \text { (c) } \\
& \text { Length of Rectangle } F=58 \mathrm{~cm} \div 2 \\
& =29 \mathrm{~cm} \\
& \text { Area of Rectangle F }=29 \mathrm{~cm} \times 17 \mathrm{~cm} \\
& =493 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 3

Length of wire $=80 \mathrm{~cm}+60 \mathrm{~cm}+80 \mathrm{~cm}+60 \mathrm{~cm}$

$$
=280 \mathrm{~cm}
$$

Length of each side of square $=280 \mathrm{~cm} \div 7$

$$
=40 \mathrm{~cm}
$$

The length of each side of the square is $\mathbf{4 0} \mathbf{~ c m}$.

Question 4

Area of one square $=80 \mathrm{~cm}^{2} \div 5$

$$
=16 \mathrm{~cm}^{2}
$$

Length of each square $=4 \mathrm{~cm}$

$12 \mathrm{~cm}+12 \mathrm{~cm}+8 \mathrm{~cm}+8 \mathrm{~cm}=40 \mathrm{~cm}$
The perimeter of the figure is 40 cm .

Question 5

Area of each identical squares $=81 \mathrm{~cm}^{2} \div 9=9 \mathrm{~cm}^{2}$ Length of each identical square $=3 \mathrm{~cm}$

$15 \mathrm{~cm}+15 \mathrm{~cm}+9 \mathrm{~cm}+9 \mathrm{~cm}=48 \mathrm{~cm}$ The perimeter of Figure B is 48 cm .

Question 6

Area of Square A $=4 \mathrm{~cm} \times 4 \mathrm{~cm}$

$$
=16 \mathrm{~cm}^{2}(1 \mathrm{u})
$$

Question 6 (cont.)

Area of Square B $=4 \times 16 \mathrm{~cm}^{2}$

$$
=64 \mathrm{~cm}^{2}
$$

Length of Square $B=8 \mathrm{~cm}$

$$
\text { Area of Square } C=9 \times 16 \mathrm{~cm}^{2}
$$

$$
=144 \mathrm{~cm}^{2}
$$

Length of Square $C=12 \mathrm{~cm}$

Area of Square D $\begin{aligned} & =16 \times 16 \mathrm{~cm}^{2} \\ & =256 \mathrm{~cm}^{2}\end{aligned}$
Length of Square $D=16 \mathrm{~cm}$

Perimeter of Square $A=4 \times 4 \mathrm{~cm}$

$$
=16 \mathrm{~cm}
$$

Perimeter of Square $B=4 \times 8 \mathrm{~cm}$

$$
=32 \mathrm{~cm}
$$

Perimeter of Square $C=4 \times 12 \mathrm{~cm}$

$$
=48 \mathrm{~cm}
$$

Perimeter of Square D $=4 \times 16 \mathrm{~cm}$

$$
=64 \mathrm{~cm}
$$

$16 \mathrm{~cm}+32 \mathrm{~cm}+48 \mathrm{~cm}+64 \mathrm{~cm}=160 \mathrm{~cm}$
The length of wire is 160 cm .

Answers to Unit 7.3

Let's Practise 7.3

Question 1

When Johan walked at the centre of the path, you will need to add 1 m around the perimeter of the park.

Perimeter of park $=30 m+40 m+30 m+40 m$

$$
=140 \mathrm{~m}
$$

$31 m+41 m+31 m+41 m=144 m$
Johan walked a total distance of 144 m.

Question 2

Length of figure
$=10 \mathrm{~cm}+16 \mathrm{~cm}+26 \mathrm{~cm}+12 \mathrm{~cm}+8 \mathrm{~cm}$
$=72 \mathrm{~cm}$

Breadth of figure $=26 \mathrm{~cm}$
$72 \mathrm{~cm}+26 \mathrm{~cm}+72 \mathrm{~cm}+26 \mathrm{~cm}=196 \mathrm{~cm}$
The perimeter of the figure is 196 cm .

Question 2 (cont.)

(from left)
Area of Square A $=10 \mathrm{~cm} \times 10 \mathrm{~cm}$

$$
=100 \mathrm{~cm}^{2}
$$

Area of Square B $=16 \mathrm{~cm} \times 16 \mathrm{~cm}$

$$
=256 \mathrm{~cm}^{2}
$$

Area of Square $C=26 \mathrm{~cm} \times 26 \mathrm{~cm}$

$$
=676 \mathrm{~cm}^{2}
$$

Area of Square D $=12 \mathrm{~cm} \times 12 \mathrm{~cm}$

$$
=144 \mathrm{~cm}^{2}
$$

Area of Square $E=8 \mathrm{~cm} \times 8 \mathrm{~cm}$

$$
=64 \mathrm{~cm}^{2}
$$

Total area of figure
$=100 \mathrm{~cm}^{2}+256 \mathrm{~cm}^{2}+676 \mathrm{~cm}^{2}+144 \mathrm{~cm}^{2}+64 \mathrm{~cm}^{2}$
$=1240 \mathrm{~cm}^{2}$
The area of the figure is 1240 cm2.

Question 3

Area of land used for strawberries
$=9 \mathrm{~m} \times 18 \mathrm{~m}$
$=162 \mathrm{~m}^{2}$
Area of land used for herbs $=5 \mathrm{~m} \times 5 \mathrm{~m}$

$$
\begin{aligned}
& =25 \mathrm{~m}^{2} \\
& =162 \mathrm{~m}^{2} \\
& =187 \mathrm{~m}^{2} \\
& =28 \mathrm{~m} \times \\
& =700 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\text { Total area of land used } \quad=162 \mathrm{~m}^{2}+25 \mathrm{~m}^{2}
$$

$$
\text { Area of plot of land } \quad=28 \mathrm{~m} \times 25 \mathrm{~m}
$$

Area of plot of land still not used
$=700 \mathrm{~m}^{2}-187 \mathrm{~m}^{2}$
$=513 \mathrm{~m}^{2}$
$513 \mathrm{~m}^{2}$ of the plot of land is still unused.

Question 4

Area of 1 rectangle $=600 \mathrm{~cm}^{2} \div 8$

$$
=75 \mathrm{~cm}^{2}
$$

Length	Breadth	Area	Check
3 cm	1 cm	$3 \mathrm{~cm}^{2}$	X
6 cm	2 cm	$12 \mathrm{~cm}^{2}$	X
9 cm	3 cm	$27 \mathrm{~cm}^{2}$	X
12 cm	4 cm	$48 \mathrm{~cm}^{2}$	X
15 cm	5 cm	$75 \mathrm{~cm}^{2}$	\checkmark

Question 4 (Cont.)

Length of each rectangle $=15 \mathrm{~cm}$
Breadth of each rectangle $=5 \mathrm{~cm}$
Length of figure $=6 \times 5 \mathrm{~cm}$

$$
=30 \mathrm{~cm}
$$

Breadth of figure $=5 \mathrm{~cm}+15 \mathrm{~cm}$

$$
=20 \mathrm{~cm}
$$

Perimeter of figure $=30 \mathrm{~cm}+30 \mathrm{~cm}+20 \mathrm{~cm}+20 \mathrm{~cm}$

$$
=100 \mathrm{~cm}
$$

The perimeter of the figure is $100 \mathbf{~ c m}$.

Question 5

Area of one of the rectangles $=20 \mathrm{~m} \times 10 \mathrm{~m}=\mathbf{2 0 0} \mathbf{m}^{2}$

Question 6

Area of large rectangle $=10 \mathrm{~cm} \times 6 \mathrm{~cm}$

$$
=60 \mathrm{~cm}^{2}
$$

Area of overlapped 4 squares $=4 \times 1 \mathrm{~cm}^{2}$

$$
=4 \mathrm{~cm}^{2}
$$

Area of shaded region $=60 \mathrm{~cm}^{2}-4 \mathrm{~cm}^{2}-4 \mathrm{~cm}^{2}$

$$
=52 \mathrm{~cm}^{2}
$$

The area of the shaded region is $\mathbf{5 2} \mathbf{~ c m}^{2}$.

Question 7

Using guess-and-check and the factors of 72 to find the length and breadth of the pond.

Area of pond	Length	Breadth	Check
$72 \mathrm{~cm}^{2}$	36	2	x
$72 \mathrm{~cm}^{2}$	18	4	x
$72 \mathrm{~cm}^{2}$	12	6	$\sqrt{ }$

Length of park $=2 \mathrm{~m}+10 \mathrm{~m}+12 \mathrm{~m}$
$=24 \mathrm{~m}$
Breadth of park $=6 m+2 m+2 m$

$$
=10 \mathrm{~m}
$$

Area of park $=24 \mathrm{~m} \times 10 \mathrm{~m}$
$=240 \mathrm{~m}^{2}$
Area of shaded region $=240 \mathrm{~m}^{2}-72 \mathrm{~m}^{2}$

$$
=168 \mathrm{~m}^{2}
$$

The area of shaded region is $168 \mathrm{~m}^{2}$.

Question 8
Using guess-and-check and the factors of 63 to find the length and breadth of the park.

Area of park	Length	Breadth	Difference	Check
$63 \mathrm{~m}^{2}$	63	1	62	x
$63 \mathrm{~m}^{2}$	21	3	18	x
$63 \mathrm{~m}^{2}$	9	7	2	\checkmark

$$
\begin{aligned}
\text { Length of park with pavement } & =9 \mathrm{~m}+2 \mathrm{~m}+2 \mathrm{~m} \\
& =13 \mathrm{~m}
\end{aligned}
$$

Breadth of park with pavement
$=7 \mathrm{~m}+2 \mathrm{~m}+2 \mathrm{~m}$
$=11 \mathrm{~m}$
Area of park with pavement $=13 \mathrm{~m} \times 11 \mathrm{~m}$

Area of pavement $=143 \mathrm{~m}^{2}-63 \mathrm{~m}^{2}$

$$
=80 \mathrm{~m}^{2}
$$

The area of the pavement is $80 \mathrm{~m}^{2}$.

Question 9

Area of shaded region $=3$ shaded squares
3 squares $=48$
1 square $=48 \div 3$

$$
\text { = } 16
$$

Length of square $A=4 \mathrm{~cm}$
Length of square $B=2 \times 4 \mathrm{~cm}$

$$
=8 \mathrm{~cm}
$$

The length of square A and square B is $\mathbf{4 c m}$ and 8 cm respectively.

Question 10
(a) Total distance travelled
$=4 \mathrm{~cm}+2 \mathrm{~cm}+2 \mathrm{~cm}+2 \mathrm{~cm}+4 \mathrm{~cm}+2 \mathrm{~cm}+$

$$
4 \mathrm{~cm}+2 \mathrm{~cm}=22 \mathrm{~cm}
$$

The marble travelled a distance of 22 cm .
(b) Area of $1^{\text {st }}$ step $=14 \mathrm{~cm} \times 2 \mathrm{~cm}$

$$
=28 \mathrm{~cm}^{2}
$$

Area of $2^{\text {nd }}$ step $=10 \mathrm{~cm} \times 2 \mathrm{~cm}$

$$
=20 \mathrm{~cm}^{2}
$$

Area of $3^{\text {rd }}$ step $=6 \mathrm{~cm} \times 2 \mathrm{~cm}$

$$
=12 \mathrm{~cm}^{2}
$$

Area of $4^{\text {th }}$ step $=4 \mathrm{~cm} \times 2 \mathrm{~cm}$

$$
=8 \mathrm{~cm}^{2}
$$

Total area of the shaded region
$=28 \mathrm{~cm}^{2}+20 \mathrm{~cm}^{2}+12 \mathrm{~cm}^{2}+8 \mathrm{~cm}^{2}$
$=68 \mathrm{~cm}^{2}$
The area of the shaded region is $\mathbf{6 8} \mathbf{c m}^{2}$.

Question 11
Length of 2 strokes $=20 \mathrm{~cm}-14 \mathrm{~cm}$

$$
=6 \mathrm{~cm}
$$

Perimeter
$=30 \mathrm{~cm}+20 \mathrm{~cm}+30 \mathrm{~cm}+20 \mathrm{~cm}+6 \mathrm{~cm}+6 \mathrm{~cm}$
$=112 \mathrm{~cm}$
The perimeter of the figure is $\mathbf{1 1 2} \mathbf{~ c m}$.

Area of figure
$=(30 \mathrm{~cm} \times 14 \mathrm{~cm})+(6 \mathrm{~cm} \times 5 \mathrm{~cm})+(7 \mathrm{~cm} \times 6 \mathrm{~cm})$
$=492 \mathrm{~cm}^{2}$
The area of the figure is $\mathbf{4 9 2} \mathbf{c m}^{2}$.

Question 12
Perimeter of figure
$=30 \mathrm{~cm}+25 \mathrm{~cm}+30 \mathrm{~cm}+25 \mathrm{~cm}$
$=110 \mathrm{~cm}$
The perimeter of the figure is 110 cm .

Length of 2 strokes $=(25 \mathrm{~cm}-15 \mathrm{~cm}) \div 2$

$$
=5 \mathrm{~cm}
$$

Length of 3 strokes $=30 \mathrm{~cm} \div 3$

$$
=10 \mathrm{~cm}
$$

Area of the figure
$=(25 \mathrm{~cm} \times 10 \mathrm{~cm})+(10 \mathrm{~cm} \times 10 \mathrm{~cm})+(10 \mathrm{~cm} \times 5 \mathrm{~cm})$
$=400 \mathrm{~cm}^{2}$
The area of the figure is $\mathbf{4 0 0} \mathbf{c m}^{2}$.

Question 13

Length of UV $=290 \mathrm{~m}-30 \mathrm{~m}=260 \mathrm{~m}$
Area of furniture department $=260 \mathrm{~m} \times 30 \mathrm{~m}$

$$
=7800 \mathrm{~m}^{2}
$$

The area of the furniture department is $7800 \mathrm{~m}^{2}$.

Question 14

(a) Length of Square $D=3 \mathrm{~cm}$

Length of Square $F=15 \mathrm{~cm}^{2} \div 3 \mathrm{~cm}$

$$
=5 \mathrm{~cm}
$$

The length of Square F is $\mathbf{5 c m}$.
(b) Area of $\mathrm{E}=3 \mathrm{~cm} \times 5 \mathrm{~cm}$

$$
=15 \mathrm{~cm}^{2}
$$

The area of E is $15 \mathbf{~ c m}^{2}$.
\qquad

Answers to Unit 7.4

Let's Practise 7.4

Question 1

Unitary approach
$L \rightarrow 3 u$
$\mathrm{L} \rightarrow 3 \mathrm{u}$
$B \rightarrow 1 u$
$B \rightarrow 1 u$
Total $\rightarrow 8 \mathrm{u}$

Each rectangle has -2 lengths
$8 u=128$
(B) $1 u=128 \div 8$

$$
=16
$$

(L) $3 u=16 \times 3$

$$
=48
$$

Area of rectangle $=16 \times 48$

$$
=768
$$

The area of the rectangle is $768 \mathbf{c m}^{2}$.

Question 2

Let the length of Square $A=1 u$
$1 \mathrm{u}=2 \mathrm{~cm}$
Length of Rectangle $B=8 u$

$$
\begin{aligned}
& =8 \times 2 \mathrm{~cm} \\
& =16 \mathrm{~cm}
\end{aligned}
$$

Breadth of Rectangle $B=4 u$

$$
\begin{aligned}
& =4 \times 2 \mathrm{~cm} \\
& =8 \mathrm{~cm}
\end{aligned}
$$

Perimeter of Rectangle $B=16+16+8+8$

$$
=48
$$

The perimeter of Rectangle B is $48 \mathbf{c m}$.

Question 3

Perimeter	Rectangle $S q=2 u^{\times 2}(4 u)$
Rec $=7 u^{\times 2}(14 u)$	$L=4 u$
Total Perimeter $=7 u+7 u$	
$=14 u$	

$$
\begin{aligned}
& \text { Area of } \mathrm{sq}=100 \mathrm{~cm}^{2} \\
& 1 \text { side of } \mathrm{sq}=10 \mathrm{~cm} \\
& \begin{aligned}
\text { Perimeter of } \mathrm{sq}(4 \mathrm{u}) & =10+10+10+10 \\
& =40
\end{aligned}
\end{aligned}
$$

Page 45 For more review questions, please visit www.onsponge.com

Question 3 (Cont.)

$$
1 u=40 \div 4
$$

$$
=10
$$

Breadth of rectangle (3u) $=3 \times 10$

$$
=30
$$

The breadth of rectangle is $\mathbf{3 0} \mathbf{~ c m}$.

Question 4

Area of 1 small square $=100 \mathrm{~cm}^{2}$
Length of 1 small square $=10 \mathrm{~cm}$
Length of 1 big square $=10 \mathrm{~cm}+10 \mathrm{~cm}$

$$
=20 \mathrm{~cm}
$$

Length of figure $\quad=10 \mathrm{~cm}+20 \mathrm{~cm}$

$$
=30 \mathrm{~cm}
$$

Length of 1 rectangle $=30 \mathrm{~cm} \div 2$

$$
=15 \mathrm{~cm}
$$

Length of 1 rectangle $=3 u$
$3 u=15 \mathrm{~cm}$
$1 u=15 \mathrm{~cm} \div 3$

$$
=5 \mathrm{~cm}
$$

Breadth of 1 rectangle $=2 u$
$2 u=5 \mathrm{~cm} \times 2$

$$
=10 \mathrm{~cm}
$$

Area of 1 rectangle $=15 \mathrm{~cm} \times 10 \mathrm{~cm}$

$$
=150 \mathrm{~cm}^{2}
$$

Area of 1 big square $=20 \mathrm{~cm} \times 20 \mathrm{~cm}$

$$
=400 \mathrm{~cm}^{2}
$$

Area of figure $=100+100+400+150+150$

$$
=900
$$

The area of the figure is $900 \mathbf{c m}^{2}$.

Question 5

$5 u \times 3 u=135$
Factors of 135, Guess \& Check

Area of Rectangle	L	B	Check
$135 \mathrm{~cm}^{2}$	45	3	\mathbf{x}
$135 \mathrm{~cm}^{2}$	27	5	\mathbf{x}
$135 \mathrm{~cm}^{2}$	15	9	\checkmark

Perimeter $=15 \mathrm{~cm}+15 \mathrm{~cm}+9 \mathrm{~cm}+9 \mathrm{~cm}$

$$
=48 \text { cm }
$$

The perimeter of the figure is $\mathbf{4 8} \mathbf{~ c m}$.

Question 6

Perimeter $\mathrm{E}=24 \mathrm{~cm}$
(1u) breadth of $\mathrm{E}=24 \mathrm{~cm} \div 4$

$$
=6 \mathrm{~cm}
$$

(a) $1 \mathrm{u}=6 \mathrm{~cm}$

$$
\begin{aligned}
6 \mathrm{u} & =6 \times 6 \mathrm{~cm} \\
& =36 \mathrm{~cm}
\end{aligned}
$$

The length of Square $A B C D$ is $\mathbf{3 6} \mathbf{c m}$.
(b) Breadth of $B(2 u)=2 \times 6 \mathrm{~cm}$

$$
=12 \mathrm{~cm}
$$

$$
\text { Length of } \mathrm{B}(4 \mathrm{u})=4 \times 6 \mathrm{~cm}
$$

$$
=24 \mathrm{~cm}
$$

Area of B $=12 \mathrm{~cm} \times 24 \mathrm{~cm}$

$$
=288 \mathrm{~cm}^{2}
$$

The area of B is $\mathbf{2 8 8} \mathbf{c m}^{2}$.

Answers to Unit 7.5

Let's Practise 7.5

Question 1

A	B	Total	Check
$7 \times 7=49$	$10 \times 10=100$	$49+100=149$	\mathbf{x}
$8 \times 8=64$	$11 \times 11=121$	$64+121=185$	\mathbf{x}
$9 \times 9=81$	$12 \times 12=144$	$81+144=225$	\checkmark

Perimeter $\quad=9+9+9+3+12+12+12+6$

$$
\begin{aligned}
& =27+3+36+6 \\
& =72
\end{aligned}
$$

The perimeter is $\mathbf{7 2} \mathbf{~ c m}$.

Question 2

Area of small sq	Area of big sq	Difference (Shaded area)	Check
$6 \times 6=36$	$8 \times 8=64$	$64-36=28$	\times
$4 \times 4=16$	$6 \times 6=36$	$36-16=20$	\checkmark

The area of the smaller square is $16 \mathbf{c m}^{2}$.
Question 3

Area of small sq	Area of big sq	Difference (Shaded area)	Check
$8 \times 8=64$	$10 \times 10=100$	$100-64=36$	\times
$9 \times 9=81$	$11 \times 11=121$	$121-81=40$	\checkmark

Perimeter of big square $=11 \mathrm{~cm} \times 4$

$$
=44 \mathrm{~cm}
$$

The perimeter of the big square is 44 cm .

Question 4

Total area of Square A + Square B
$=176 \mathrm{~cm}^{2}+9 \mathrm{~cm}^{2}+9 \mathrm{~cm}^{2}$
$=194 \mathrm{~cm}^{2}$

Area of A	Area of B	Unshaded region	Check
$7 \times 7=49$	$15 \times 15=$ 225	$225+49=274$ $274-9-9=256$	\mathbf{x}
$6 \times 6=36$	$14 \times 14=$	$196+36=232$	\mathbf{x}
	196	$232-9-9=214$	
$5 \times 5=25$	$13 \times 13=$	$169+25=194$	\checkmark
	169	$194-9-9=176$	

The length of A and B is $\mathbf{5 c m}$ and $\mathbf{1 3} \mathbf{c m}$ respectively.

Question 5

Guess \& Check, Factors of 24

Length	Breadth	Total Perimeter	Check
$12 \times 2=24$	$2 \times 2=4$	$24+4=28$	\times
		$28 \times 2=56$	
$8 \times 2=16$	$3 \times 2=6$	$16+6=22$	\times
		$22 \times 2=44$	
$6 \times 2=12$	$4 \times 2=8$	$12+8=20$	\checkmark
		$20 \times 2=40$	

4 squares wide
6 squares long

Empowered Learning

While every care has been taken to compile this answer booklet, errors may still arise in the course of compilation and production. If you notice any error, kindly write to feedback@onsponge.com so that we can review it.

