

2016 Copyright of onSponge Pe Ltd
All rights reserved. No parts of this material may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner.

P6 Solutions

In all solutions, u represents units and p represents parts

Summary
A : B+C
$10: 3$
Total $=10 \mathrm{u}+15$
$=25 u$
$25 u=1000$
$1 u=1000 \div 25$
$=40$
$12 \mathrm{u}=12 \times 40$

Daniel's contribution was $\$ 480$.

Question 2							
A	C	M	W	A	B	G	C
$3^{\times 10}$	$2^{\times 10}$	$1^{\times 6}$	$4^{\times 6}$	$5^{\times 6}$	9	11	20
30	20	6	24	30			

Summary						
M	$:$	W	$:$	B	$:$	G
6	$:$	24	$:$	9	$:$	11

Difference $(W$ and $B)=24 u-9 u$

$=15 u$$\quad$| $15 u$ | $=75$ |
| ---: | :--- |
| u $=75 \div 15$
 $=5$ | |
| Total $=30 u+20 u$
 $=50 u$ | |
| $50 u$ $=50 \times 5$
 $=250$ | |

There are $\mathbf{2 5 0}$ people in the tour group.

Answer to Unit 1.2	
Question 1	
At first	In the end
G : $\mathrm{V}+\mathrm{F}$	G : $\mathrm{V}+\mathrm{F}$
$3^{\times 7}$: $5^{\times 7}$	$7^{\times 3}: 13^{\times 3}$
21 : 35	21 : 39
Change $=39 u-35 u$	
$=4 u$	
$4 u=12$	
$1 u=12 \div 4$	
$=3$	

Answer to Unit 1.2

Question 1 (cont.)

$$
\begin{aligned}
& \text { Total } \begin{aligned}
(e n d) & =21 u+39 u \\
& =60 u
\end{aligned} \\
& \begin{aligned}
60 u & =60 \times 3 \\
& =180
\end{aligned}
\end{aligned}
$$

The music department had 180 instruments in the end.

Question 2

There are $\mathbf{5 6}$ girls in the swimming pool.

Answer to Unit 1.3

Question 1

$B+C$	$:$	$A+B$	$:$	Diff	A	$:$	C	$:$	Diff
$7^{\times 2}$	$:$	$5^{\times 2}$	\vdots	$2^{\times 2}$	3	$:$	7	$:$	4
14	$:$	10	$:$	4					

Summary			
A			
3	B	$:$	C
3		7	$:$

$$
\begin{aligned}
7 \mathrm{u} & =77 \\
1 \mathrm{u} & =77 \div 7 \\
& =11 \\
\text { Total } & =3 u+7 u+7 u \\
& =17 u \\
17 \mathrm{u} & =17 \times 11 \\
& =187
\end{aligned}
$$

The total area of the figure is $187 \mathbf{~ c m}^{2}$.

Question 2

Answer to Unit 1.3

Question 2 (cont.)

$$
\begin{aligned}
1 u & =6+6 \\
& =12
\end{aligned}
$$

Total age (6 years' ago) $=3 u+5 u$

$$
=8 u
$$

Total age $($ now $)=8 u+12$

$$
\begin{aligned}
& =8 \times 12+12 \\
& =108
\end{aligned}
$$

The sum of their current ages is $\mathbf{1 0 8}$ years.

$45 u-12 u=90+75$
$33 u=165$
$1 u=165 \div 33$

$$
=5
$$

$$
4 u=4 \times 5
$$

$$
=20
$$

Shelly had 20 figurines at first.

Question 2

$$
\left.\begin{array}{rl}
6 u & =360 \\
1 u & =360 \div 6 \\
& =60 \\
4 u & -140
\end{array}\right)=4 \times 60-1400 \text {. } \begin{aligned}
& \\
&=100
\end{aligned}
$$

There was $\mathbf{1 0 0} l$ of water in Tank Q in the end.

Answer to Unit 1.5

Question 1

B	$:$	T	C	$:$
5	$:$	1	$2^{\times 3}$	$:$
	10	$:$	$1^{\times 3}$	

Summary

Items	Quantity	\times	Value (\$)	Total value (\$)
B	5 u	\times	22	110 u
T	1 u	\times	12	12 u
C	10 u	\times	32	320 u
Total	16 u			442 u

$$
\begin{aligned}
& 442 u=884 \\
& 1 u=884 \div 442 \\
& =2 \\
& 16 u=16 \times 2 \\
& \\
& =32
\end{aligned}
$$

He bought a total of $\mathbf{3 2}$ ties, belts and cufflinks.

Question 2

Items	Quantity	\mathbf{x}	Value (\$)	Total value (\$)
C	24	\times	7 u	168 u
S	14	\times	2 u	28 u
Total	38			196 u

$$
\begin{aligned}
196 u & =215.6 \\
1 u & =215.6 \div 196 \\
& =1.1 \\
7 u & =7 \times 1.1 \\
& =7.7
\end{aligned}
$$

A cup cost \$7.70.

Answer to Unit 1.6

Question 1

Page 22016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Question 2
Total papers

$$
\begin{aligned}
\frac{3}{4} \mathrm{R} & =3+15 \\
& =18 \\
\frac{1}{4} \mathrm{R} & =18 \div 3 \\
& =6 \\
\frac{4}{4} \mathrm{R} & =6 \times 4 \\
& =24 \\
\frac{3}{8} \mathrm{~T} & =24+3 \\
& =27 \\
\frac{1}{8} \mathrm{~T} & =27 \div 3 \\
& =9 \\
\frac{8}{8} \mathrm{~T} & =8 \times 9 \\
& =36
\end{aligned}
$$

Lina used 72 pieces of origami paper.

Question 3

There were $\mathbf{1} \mathbf{~ k g ~} 200 \mathrm{~g}$ of flour left in the container.

Question 1
$\frac{2}{3} M=\frac{3}{5} F$
$\frac{6}{9} M=\frac{6}{10} F$

M : W
$9: 10$

Total $=9 u+10 u$

$$
=19 u
$$

$19 u=190$
$1 u=190 \div 19$
$=10$
Total children $=3 u+4 u$

$$
=7 u
$$

$7 \mathrm{u}=7 \times 10$

$$
=70
$$

There were $\mathbf{7 0}$ children at the engagement party.

Question 2

$$
48 u=96
$$

$$
1 u=96 \div 48
$$

$$
=2
$$

$$
\text { Total }=40 u+48 u+45 u
$$

$$
=133 u
$$

$$
133 u=133 \times 2
$$

$$
=266
$$

Karen's total score was 266 marks.

Chapter 2 Advanced Model Drawing

Let's Get Started

2.

	At first	Sold	In the end (Left)
T	$\frac{2}{2}(10 \mathrm{u}+32)$	$\frac{1}{2}(5 \mathrm{u}+16)$	$\frac{1}{2}(5 \mathrm{u}+16)$
P	$\frac{10}{10}(10 \mathrm{u})$	$\frac{3}{10}(3 \mathrm{u})$	$\frac{7}{10}(7 \mathrm{u})$

In the end

3.

In the end

	In the end	Sold	At first
R	$\frac{1}{4}(3 u+15)$	$\frac{3}{4}(9 u+45)$	$\frac{4}{4}(12 u+60)$
G	$\frac{3}{10}(3 u)$	$\frac{7}{10}(7 u)$	$\frac{10}{10}(10 u)$

At first

4.

	At first	Spent	In the end ((Left)
K	$\frac{8}{8}(40 \mathrm{u})$	$\frac{1}{8}(5 \mathrm{u})$	$\frac{7}{8}(35 \mathrm{u})$
L	$\frac{5}{5}(40 \mathrm{u})$	$\frac{2}{5}(16 \mathrm{u})$	$\frac{3}{5}(24 \mathrm{u})$

In the end

Let's Learn

Ask Yourself

1. There is sufficient information given at the beginning of the question to form a relationship to solve the question.
2. The problem should be solved using the Modeldrawing approach as it involves the keywords "more than/less than" as well as a whole number.

Answer to Advanced Model Drawing (More

than/Less than)
Question 1
At first

	At first	Cleared	In the end (Left)
C	$\frac{3}{3}(15 u+24)$	$\frac{2}{3}(10 u+16)$	$\frac{1}{3}(5 u+8)$
L	$\frac{5}{5}(15 u)$	$\frac{1}{5}(3 u)$	$\frac{4}{5}(12 u)$

In the end

C	$5 u$	8	
L	$5 u$	8	20
	$12 u$		

$7 u=8+20$

$$
=28
$$

$$
1 u=28 \div 7
$$

$$
=4
$$

$$
10 u+16=10 \times 4+16
$$

$$
=56
$$

56 cars cleared the gantry.

Question 2
At first

	Total	Took part	Did not
B	$\frac{8}{8}(40 \mathrm{u}+112)$	$\frac{5}{8}(25 \mathrm{u}+70)$	$\frac{3}{8}(15 \mathrm{u}+42)$
G	$\frac{5}{5}(40 \mathrm{u})$	$\frac{2}{5}(16 \mathrm{u})$	$\frac{3}{5}(24 \mathrm{u})$

In the end

Page 42016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Answer to Advanced Model Drawing (More

than/Less than)

Question 2 (Cont.)

$24 u-15 u=9 u$
$9 u=27$
$1 u=27 \div 9$
$=3$
Total $($ took part $)=25 u+70+16 u$

$$
=41 u+70
$$

$41 u+70=41 \times 3+70$

$$
=193
$$

193 students took part in the performance.

Question 3
At first

	At first	Sold	In the end (Left)
C	$\frac{9}{9}(36 u+45)$	$\frac{5}{9}(20 u+25)$	$\frac{4}{9}(16 u+20)$
J	$\frac{4}{4}(36 u)$	$\frac{1}{4}(9 u)$	$\frac{3}{4}(27 u)$

Sold

$20 u-9 u=11 u$
$11 u=66$
$1 u=66 \div 11$

$$
=6
$$

Total $(\mathrm{end})=16 u+20+27 u$

$$
=43 u+20
$$

$43 u+20=43 \times 6+20$

$$
=278
$$

278 crossword puzzle books and jigsaw puzzles remained in total.

Question 4
In the end

Answer to Advanced Model Drawing (More
than/Less than)

Question 4 (Cont.)

		At first
T	$\frac{3}{5}(12 u+30)$	$\frac{5}{5}(20 u+50)$
S	$\frac{4}{5}(12 u)$	$\frac{5}{5}(15 u)$

At first

\left.| T | 15 u | 5 u | 50 |
| :--- | :---: | :---: | :---: |
| S | 15 u | | |$\right\} 155$

$$
\begin{aligned}
35 u & =155-50 \\
& =105 \\
1 u & =105 \div 35 \\
& =3
\end{aligned}
$$

T (at first) $=20 \times 3+50$

$$
=110
$$

$\mathrm{T}(\mathrm{left})=\frac{7}{10} \times 110$

$$
=77
$$

77 table lamps remained.

Answer to Advanced Model Drawing (Equal stage

 at first)Question 1
At first

D	7u
Y	7u
H	7u

In the end

$$
\begin{aligned}
& \begin{aligned}
2 \mathrm{u} & =300-74 \\
& =226
\end{aligned} \\
& \begin{aligned}
1 \mathrm{u} & =226 \div 2 \\
& =113
\end{aligned} \\
& \begin{aligned}
\mathrm{D}(\text { end }) & =7 \times 113-200 \\
& =591
\end{aligned} \\
& \text { Deanna had } \$ 591 \text { in the end. }
\end{aligned}
$$

Question 2
At first

	$25 u$
M	$25 u$

Answer to Advanced Model Drawing (Equal Stage at first)

Question 2 (Cont.)

In the end

$10 u+7 u+25 u=78+48$
$42 u=126$
$1 u=126 \div 42$
$=3$
$25 u=25 \times 3$
$=75$
Each of them received 75 pins at first.

Answer to Advanced Model Drawing (Equal Stage

 End)Question 1

In the end

D	$15 u$
W	$15 u$
S	$15 u$

At first

$15 u+15 u+15 u+5 u+9 u=298+56$
$59 u=354$
$1 u=354 \div 59$
$=6$
$D($ at first $)=15 \times 6-56$

$$
=34
$$

Davis had 34 cards at first.

Question 2
In the end

At first

1	20u	8 u		
D	252			
S				222
R	$28 u$		7 u	

Answer to Advanced Model Drawing (Equal Stage End)

Question 2 (Cont.)

$$
\begin{aligned}
& 28 u=252 \\
& 1 u=252 \div 28 \\
& \quad=9
\end{aligned}
$$

Total $($ at first $)=20 u+252+252+222+35 u$

$$
\begin{aligned}
& =20 \times 9+726+35 \times 9 \\
& =1221
\end{aligned}
$$

They made 1221 balloons altogether at first.

Answer to Advanced Model Drawing (Repeated

 Items)Question 1

$\frac{3}{25}$ of total $=3 u$
$\frac{1}{25}$ of total $=1 \mathrm{u}$
$\frac{25}{25}$ of total $=25 u$
$25 u-3 u-3 u-1 u=216+72$
$18 u=288$
$1 u=288 \div 18$
$=16$
$25 u=25 \times 16$
$=400$
There are $\mathbf{4 0 0}$ buns in the bakery shop.

Question 2

H	$2 u$	6	23
	2 u	6	
	2 u	6	15
	2 u		
N	2 u		

$$
\begin{aligned}
5 u & =6+15+6+23 \\
& =50 \\
1 u & =50 \div 5 \\
& =10 \\
2 u & +6=2 \times 10+6 \\
& =26
\end{aligned}
$$

There are $\mathbf{2 6}$ rings in the shop.

Page 62016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Answer to Advanced Model Drawing (Internal Transfer)

Question 1

B		200
	$10 u$	
	$10 u$	

	At first	Change	End
B	$\frac{10}{10}(10 u+200)$	$\frac{3}{10}(3 u+60)$	$\frac{7}{10}(7 u+140)$
K	$10 u$	$+(3 u+60)$	$13 u+60$

In the end

| | B | 7 u | 126 | 14 |
| :--- | :---: | :---: | :---: | :---: | | K |
| :--- |

$13 u-7 u=126$
$6 u=126$
$1 u=126 \div 6$

$$
=21
$$

$3 u+60=3 \times 21+60$

$$
=123
$$

123 people had moved to Kusu Beach.

Question 2
At first

	At first	Change	End
A	$12 u$	$+(5 u+20)$	$17 u+20$
B	$\frac{12}{12}(12 u+48)$	$\frac{5}{12}(5 u+20)$	$\frac{7}{12}(7 u+28)$

In the end

$17 u-7 u=28+2$
$10 u=30$
$1 u=30 \div 10$
$=3$
$22 u+48=24 \times 3+48$
$=120$
There are $\mathbf{1 2 0}$ children altogether in both campsites.
\qquad
Question 3
At first

L		5 u
M		
	5 u	2400

Answer to Advanced Model Drawing (Internal Transfer)

Question 3 (Cont.)

At first

	At first	Change	
L	$\frac{5}{5}(5 u+2400)$	$\frac{3}{5}(3 u+1440)$	$\frac{2}{5}(2 u+960)$
M	$5 u$	$+(3 u+1440)$	$8 u+1440$

$2^{\text {nd }}$ change			
		Change	End
L	$2 u+960$	$+(2 u+360)$	$4 u+1320$
M	$\frac{4}{4}(8 u+1440)$	$\frac{1}{4}(2 u+360)$	$\frac{3}{4}(6 u+1080)$

In the end

L	4 u	52	1080	188
M	4 u	52	1080	

$2 u=52$
$1 u=52 \div 2$
$=26$
$3 u+1440=3 \times 26+1440$

$$
=1518
$$

Lynette transferred $\$ 1518$ to Michelle.

Question 4
At first

H	$5 u$	45
	$5 u$	

	At first	Change	
H	$\frac{5}{5}(5 u+45)$	$\frac{1}{5}(1 u+9)$	$\frac{4}{5}(4 u+36)$
L	$5 u$	$+(1 u+9)$	$6 u+9$

$2^{\text {nd }}$ Change

		Change	End
H	$4 u+36$	$+(4 u+6)$	$8 u+42$
L	$\frac{3}{3}(6 u+9)$	$\frac{2}{3}(4 u+6)$	$\frac{1}{3}(2 u+3)$

In the end

				$6 u$	
H	$2 u$	3	27	42	
	$2 u$	3			

$$
\begin{aligned}
6 u & =3+27 \\
& =30 \\
1 u & =30 \div 6 \\
& =5 \\
1 u & +9=5+9
\end{aligned}
$$

$$
=14
$$

Mrs Hagen gave Letilia 14 dumplings.

Chapter 3 Number Patterns

Answer to Unit 3.1

Let's Get Started 3.1
1.

Figure no.	1	2	3	4	5	6	\cdots	18
No. of dots	2	5	8	11	14			
+3	$\underbrace{}_{+3}$	$\underbrace{}_{+3}$						

(a) Difference is 3 .
(b) Test (Figure 1): $1 \times 3-1=2$

Test (Figure 2): $2 \times 3-1=5$
Unique term: Figure no. $\times 3-1$
(c) No. of dots in Figure 6 $=6 \times 3-1$

$$
=17
$$

No. of dots in Figure $18=18 \times 3-1$

$$
=53
$$

2. (a) Difference $=7-3$
$=4$
(b) Unique term (No. of dots) $=$ Fig no. $\times 4-1$
(c) No. of dots in Figure $6=6 \times 4-1$

$$
=23
$$

No. of dots in Figure $15=15 \times 4-1$

$$
\text { = } 59
$$

Lets' Learn 3.1

Ask yourself

1. There is an increase in the number of squares by 1 .

This is a number pattern involving common difference.
2. General pattern: Number of squares is the same as the Figure Number.

Think Further

(a)

Figure no.	Pattern to find (No. of squares)	Pattern to find (No. of circles)
1	1×2	$1 \times 4+2$
2	2×2	$2 \times 4+2$
3	3×2	$3 \times 4+2$
4	4×2	$4 \times 4+2=18$
5	5×2	$5 \times 4+2=22$

(b) Unique term (No. of circles) $=$ Figure no. $\times 4+2$

Let's Practise 3.1

Question 1
(a)

Figure no.	No. of triangles	Total no. of dots
1	2	10
2	4	14
3	6	18
4	8	22
5	10	26

Answer to Unit 3.1

Question 1 (Cont.)

(b) Unique term (No. of triangles) $=$ Figure no. $\times 2$

No. of triangles in Figure $83=83 \times 2$

$$
=166
$$

(c) Unique term (Total no. of dots) $=$ Figure no. $\times 4+6$

Working backwards
Figure no. $\times 4=282-6$

$$
=276
$$

Figure no. $=276 \div 4$

$$
=69
$$

There will be 282 dots in Figure 69.
Question 2
(a)

(b) (i) Unique term (No. of shaded coins)
$=$ Figure no. $\times 2+2$
Working Backwards

$$
\begin{gathered}
A \times 2=40-2 \\
=38 \\
A=38 \div 2 \\
=19
\end{gathered}
$$

(ii) Unique term (No. of unshaded coins)
= Figure no.
$B=19$
(iii) Unique term (Total no. of coins)

$$
=\text { Figure no. } \times 3+2
$$

$$
C=19 \times 3+2
$$

$$
=59
$$

Question 3
(a) Unique term (No. of matchsticks) $=$ Figure no. $\times 5+1$

No. of matchsticks in Figure $5=5 \times 5+1$

$$
=26
$$

(b) Working backwards

Figure no. $\times 5=131-1$

$$
=130
$$

Figure no. $=130 \div 5$

$$
=26
$$

The figure number formed is Figure 26.

Question 4
(a)

Page 82016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Answer to Unit 3.1

Question 4 (Cont.)

(b) Unique term (No. of squares) $=$ Figure no. $\times 10+2$

No. of squares in Figure $500=500 \times 10+2$
$=5002$
Working backwards
Figure no. $\times 10=182-2$

$$
=180
$$

Figure no. $=180 \div 10$
$=18$

Figure No.	Number of squares
1	12
2	22
3	21
\ldots	\ldots
18	182
500	5002

Answer to Unit 3.2

Let's Get Started 3.2

1. (a)
$1=1 \times 1$
$4=2 \times 2$
$9=3 \times 3$
$16=4 \times 4$
(b)

Figure 1: $1 \times 1=1$
Figure 2 : $2 \times 2=4$
Figure 3: $3 \times 3=9$
The number of dots in each figure is the square of its figure number or it can be represented as (Figure no. x Figure no.).
(c)

No of dots in Figure $5=5 \times 5$

$$
=25
$$

No of dots in Figure $6=6 \times 6$

$$
=36
$$

No of dots in Figure $13=13 \times 13$

2
(a) Figure $1=1 \times 1=1$

Figure $2=2 \times 2=4$
Figure $3=3 \times 3=9$
Figure $4=4 \times 4=16$
The number of squares in each figure is the square of its figure number.
(b) Unique term (No. of squares) $=$ Figure no. \times Figure no.

Answer to Unit 3.2

Let's Learn 3.2

Ask Yourself

1. There is an increase in the number of squares. This type of number pattern is known as square numbers.
2. General pattern: No. of dots $=$ Figure no. \times Figure no.

Think Further

(a)

Figure no.	No. of dots	Pattern to find no. of dots
1	2	$1^{2}+1$
2	5	$2^{2}+1$
3	10	$3^{2}+1$
4	17	$4^{2}+1$
5	26	$5^{2}+1$

(b) Unique term (No. of dots)
$=$ Figure no. \times Figure no. +1

Let's Practise 3.2

Question 1

Figure no.	Number of dots	Pattern to find number of dots
1	1	1×1
2	4	2×2
3	9	3×3
4	16	4×4
5	(a)	5×5
\ldots	81	
(b)		

(a) No. of dots (Figure 5) $=5 \times 5$ $=25$
(b) Figure no. $=\sqrt{81}$

$$
=9
$$

(c) Figure no. $=\sqrt{256}$

$$
=16
$$

Question 2
(a)

(b) Unique term (No. of circles) $=$ Figure no. \times Figure no.

No. of circles $=11 \times 11$

$$
=121
$$

(c) No. of triangles $=2$

No. of circles $=402-2$

$$
=400
$$

Question 2 (Cont.)

Working backwards
Figure no. $=\sqrt{400}$

$$
=20
$$

There will be 402 circles and triangles in Figure 20.

Question 3
(a)

Figure no.	Number of shaded rectangles	Pattern to find no. of shaded rectangles
1	2	$1 \times 3-1$
2	5	$2 \times 3-1$
3	8	$3 \times 3-1$
\ldots		Figure no. $\times 3-1$

No. of shaded rectangles $=16 \times 3-1$

$$
=47
$$

(b) Working backwards

Figure no. $\times 3=728+1$

$$
=729
$$

Figure no. $=729 \div 3$

$$
=243
$$

There will be 728 shaded rectangles in Figure 243.
(c)

Figure no.	Total number of rectangles	Pattern to find no. of shaded rectangles
1	4	2×2
2	9	3×3
3	16	4×4
\ldots		Figure no. $-1 \times$ Figure no. -1

Working backwards
Figure no. $\times 3=1091+1$

$$
=1092
$$

Figure no. $=1092 \div 3$

$$
=364
$$

$364+1=365$
$365 \times 365=133225$
There will be a total of $\mathbf{1 3 3} \mathbf{2 2 5}$ rectangles in a figure with 1091 shaded rectangles.

Question 4
(a) Unique term (No. of unshaded squares)
$=($ Fig no. -1$) \times($ Fig no. -1$)$
No. of unshaded squares in Figure $16=15 \times 15$

$$
=225
$$

There are 225 unshaded squares in Figure 16.
(b) No. of unshaded squares in Figure $42=41 \times 41$

$$
=168
$$

Area of unshaded squares $=1681 \times 25$

$$
=42025
$$

The area of the unshaded squares in Figure 42 is 42025 cm 2.

Answer to Unit 3.2

Question 4 (Cont.)

(c) Unique term (No. of shaded squares) = Figure no.

Working backwards
No. of shaded squares $=1225 \div 25$

$$
=49
$$

There are 49 shaded squares.
(d) No of shaded squares $=65$

No of unshaded squares $=(65-1)^{2}$

$$
=4096
$$

Perimeter
$=5(64+64+32+32+31+33+1+1+1+1)$
$=1300$
The perimeter of the figure in Pattern 65 is $1300 \mathbf{c m}$.

Question 5

(a) No. of cubes in Figure $3=1+4+9$

$$
=14
$$

No. of cubes in Figure $4=1+4+9+16$

$$
=30
$$

Difference $=30-14$

$$
=16
$$

16 more cubes are needed to make Figure 4.
(b) Difference $=(9 \times 9)+(10 \times 10)$

$$
\text { = } 181
$$

(c) No. of cubes in Layer $18=18 \times 18$

$$
=324
$$

Question 6
(a) Unique term (No. of fishes)
$=($ Day no. -1$) \times($ Day no. -1$)+7$
No. of fishes in Day $45=44 \times 44+7$

$$
=1943
$$

There will be 1943 fishes on Day 45.
(b) Working backwards
$3488-7=3481$
$\sqrt{3481}=59$
Fig no. $=59+1$
$=60$
There will be 3488 fishes on Day 60.
(c) No. of sets $=1573 \div 6.5$

$$
=242
$$

No. of fish $=4 \times 242$

$$
=968
$$

Working backwards
968-7 = 961
$\sqrt{961}=31$
Fig no. $=31+1$

$$
=32
$$

Berlin's father will earn \$1573 on Day 32.

Page 102016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Answer to Unit 3.3

Let's Get Started 3.3

1.

(a) There is a consecutive increase by 1 from one figure number to the next.
(b)

Figure $1=\frac{(1 \times 2)}{2}$

$$
=1
$$

Figure $2=\frac{(2 \times 3)}{2}$

$$
=3
$$

The number of dots in the consecutive figures follows the rule of triangle number where $\frac{(\text { Figure no. } \times \text { Figure no. }+1)}{2}$. 2.
(a) Figure $1=\frac{(1 \times 2)}{2}$

$$
=1
$$

Figure $2=\frac{(2 \times 3)}{2}$

$$
=3
$$

Figure $3=\frac{(3 \times 4)}{2}$

$$
=6
$$

The number of squares in the consecutive figures follows the rule of triangle number where $\frac{(\text { Figure no. } \times \text { Figure no. }+1 \text {) }}{2}$.
(b) Unique terms : $\frac{(\text { Figure no. } \times \text { Figure no. }+1 \text {) }}{2}$

Let's Practise 3.3

Question 1
(a) Unique term (Total no. of circles) $=\frac{\text { Figure no. } \times \text { Figure no. }+1}{2}$

Total no. of circles in Figure $12=\frac{12 \times 13}{2}$

$$
=78
$$

There are 78 circles in Figure 12.
(b) Working backwards
$1540 \times 2=3080$
$\sqrt{3080} \approx 55$
Test 1:54×55=2970
Test 2: $55 \times 56=3080$
There are 1540 circles in Figure 55.

Question 2
(a) Unique term (Total no. of apples) $=\frac{\text { Figure no. } \times \text { Figure no. }+1}{2}$

Total no. of apples in Figure $10=\frac{10 \times 11}{2} \times 10$

$$
\text { = } 550
$$

There are 550 apples harvested on the $10^{\text {th }}$ day.
(b) $1530 \div 10=153$
$\frac{\text { Figure no. } \times \text { Figure no. }+1}{2}=153$
Figure no. $x($ Figure no. +1$)=306$

$$
\begin{aligned}
\sqrt{306} & =17.49286 \\
& \approx 17
\end{aligned}
$$

Answer to Unit 3.3

Question 2 (Cont.)

(Check) $17 \times 18=306$
Figure no is 17
1035 apples were harvested on the $\mathbf{1 7}^{\text {th }}$ day.

Question 3
(a) Unique term (Total no. of triangles)
$=$ Figure no. \times Figure no.
Total no. of triangles in Figure $22=22 \times 22$

$$
=484
$$

There are 484 triangles in Figure 22.
(b) Working backwards
$\sqrt{961}=31$
There will be a total of 961 triangles in Figure 31.
(b) Working backwards

Figure no. $=\sqrt{121}$

$$
=11
$$

Unique term (No. of shaded triangles) $=\frac{\text { Fig no. } \times \text { Fig no. }+1}{2}$
No. of shaded triangles in Figure $11=\frac{11+12}{2}$

$$
=66
$$

There are 66 shaded triangles.
(c) Unique term (No. of unshaded triangles)
$=\frac{\text { Fig no. }+1 \times \text { Fig no. }+2}{2}$
Working backwards
$2485 \times 2=4970$
$\sqrt{4974} \approx 70$
Test 1: $69 \times 70=4830$
Test 2: $70 \times 71=4970$
There will be 2485 unshaded triangles in Figure 69.

Question 4
(a) Unique term (Total no. of crosses)
$=\frac{\text { Figure no. } \times \text { Figure no. }+1}{2}$
Total no. of crosses (Figure 5$)=\frac{5 \times 6}{2}$

$$
=15
$$

No. of unshaded crosses $=15-4$

$$
=11
$$

Unique term (No. of shaded crosses) $=$ Fig no. -1
No. of shaded crosses $($ Figure 8$)=8-1$

$$
=7
$$

Total no. of crosses (Figure 8$)=\frac{8 \times 9}{2}$

$$
=36
$$

No. of unshaded crosses $=36-7$

$$
=29
$$

(b) Total no. of crosses (Figure 29) $=\frac{29 \times 30}{2}$

$$
=435
$$

There is a total of 435 crosses in Figure 29.

Question 4 (Cont.)

(c) Working backwards
$741 \times 2=1482$
$\sqrt{1482} \approx 70$
Test $1: 37 \times 38=1406$
Test 2: $38 \times 39=1482$
There will be 741 crosses in Figure 38.
(d) Working backwards
$2080 \times 2=4160$
$\sqrt{4160} \approx 64$
Test 1: $63 \times 64=4032$
Test 2: $64 \times 65=4160$
No. of shaded crosses (Figure 64) $=64-1$
$=63$
No. of unshaded crosses $=2080-63$

$$
=2017
$$

There are 2017 unshaded crosses.

Question 5
(a) No. of blocks at Layer $12=(12-1) \times 2$

$$
=22
$$

Number on the extreme right of Layer 12
$=1+(2+4+6+\ldots+22)$
$=1+2(1+2+3+\ldots+11)$
$=1+2\left[\frac{11+1}{2} \times 11\right]$
$=133$
(b) No. of blocks at Layer 68
$=(68-1) \times 2$
$=134$
Number on the extreme right of Layer 68
$=1+(2+4+6+\ldots+134)$
$=1+2(1+2+3+\ldots+67)$
$=1+2\left[\frac{(67+1)}{2} \times 67\right]$
$=4557$
(c) $1261-1=1260$
$1260 \div 2=630$
$\frac{\text { Fig no. }}{2} \times($ Fig no. +1$)=630$
$($ Fig no. $) \times($ Fig no. +1$)=1260$
$\sqrt{1260}=35.4964787$
Test : $35 \times 36=1260$
$35+1=36$
In Layer 36, the number 1261 will be on the extreme right of the layer.

Question 5 (Cont.)

(d) 2163-1 = 2162
$2162 \div 2=1081$
$\frac{\text { Fig No. }}{2} \times($ Fig No. +1$)=1081$
$($ Fig No. $) \times($ Fig No. +1$)=2162$
$\sqrt{2162}=46.4973$
Test: $46 \times 47=2162$
Layer: $46+1=47$
$46 \times 2=92$
$2162-91=2071$
The number on the extreme left of the layer is 2071.

Chapter $\boldsymbol{4}^{\text {Circles }}$

Answer to Unit 4.1

Let's Get Started 4.1

1. Area of shaded part
$=25 \mathrm{~cm} \times 25 \mathrm{~cm}-\frac{1}{4} \times \pi \times 25 \mathrm{~cm} \times 25 \mathrm{~cm}$
$\approx 134 \mathrm{~cm}^{2}$
2. Area of shaded part
$=\frac{1}{4} \times \pi \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}-\frac{1}{2} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}$
$\approx 7 \mathrm{~cm}^{2}$

Let's Learn 4.1

Ask Yourself

1. The figures are 1 large quadrant of radius 20 cm , 1 small quadrant of radius 8 cm and a rectangle measuring 8 cm by 20 cm .

Let's Practise 4.1

Question 1
Area of shaded parts
$=36 \mathrm{~cm} \times 36 \mathrm{~cm}-\pi \times 18 \mathrm{~cm} \times 18 \mathrm{~cm}$
$\approx 278 \mathrm{~cm}^{2}$
The area of the shaded parts is $\mathbf{2 7 8} \mathbf{c m}^{2}$.

Question 2
Perimeter of unshaded Region $\mathrm{Q}=2 \times \pi \times 12 \mathrm{~cm}$

$$
\approx 75 \mathrm{~cm}
$$

The perimeter of the unshaded Region Q is $75 \mathbf{~ c m}$.
Area of unshaded Region Q
$=24 \mathrm{~cm} \times 24 \mathrm{~cm}-\pi \times 12 \mathrm{~cm} \times 12 \mathrm{~cm}$
$\approx 124 \mathrm{~cm}^{2}$
The area of unshaded Region Q is $\mathbf{1 2 4} \mathbf{~ c m}^{2}$.

Question 3
Perimeter of shaded region
$=\frac{3}{2} \times 2 \times 3.14 \times 12 \mathrm{~cm}+36 \mathrm{~cm}+24 \mathrm{~cm}+36 \mathrm{~cm}$
$=209.04 \mathrm{~cm}$
The perimeter of the shaded region is $\mathbf{2 0 9 . 0 4} \mathbf{~ c m}$.

Page 122016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Answer to Unit 4.1

Question 3 (Cont.)

Area of shaded region
$=24 \mathrm{~cm} \times 36 \mathrm{~cm}-\frac{3}{2} \times 3.14 \times 12 \mathrm{~cm} \times 12 \mathrm{~cm}$
$=185.76 \mathrm{~cm}^{2}$
The area of the shaded region is $185.76 \mathbf{~ c m}^{2}$.

Question 4
Area of shaded part
$=2 \times\left(\frac{1}{4} \times \pi \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}-\frac{1}{2} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}\right)$
$=14 \mathrm{~cm}^{2}$
The area of the shaded part is $14 \mathbf{~ c m}^{2}$.

Question 5
Area of shaded region
$=7 \times\left[\left(\frac{1}{4} \times \pi \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}\right)-\left(\frac{1}{2} \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}\right)\right]$
$=700 \pi-1400 \mathrm{~cm}^{2}$
Area of unshaded regions
$=\pi(20 \mathrm{~cm} \times 20 \mathrm{~cm})-(700 \pi-1400)$
$\approx 458 \mathrm{~cm}^{2}$
The area of the shaded region is $\mathbf{4 5 8} \mathbf{~ c m}^{2}$.

Question 6

Perimeter of large semicircle
$=\left(\frac{1}{2} \times \pi \times 36\right)+36$
$=18(\pi+2)$
Perimeter of small semicircle
$=\left(\frac{1}{2} \times \pi \times 12\right)+12$
$=6(\pi+2)$
Perimeter of large semicircle : Perimeter of small
semicircle
$=18(\pi+2): 6(\pi+2)$
$=3: 1$
Area of the large semicircle
$=\frac{1}{2} \times \pi \times 18^{2}$
$=162 \pi$
Area of small semicircle
$=\frac{1}{2} \times \pi \times 6^{2}$
$=18 \pi$
Area of the large semicircle : Area of the small semicircle
$=162 \pi$: 18π
= $9: 1$

Question 7

Diameter of small circle $=16 \mathrm{~cm}$
Diameter of medium circle $=32 \mathrm{~cm}$
Area of shaded region
$=\pi \times 32 \mathrm{~cm} \times 32 \mathrm{~cm}-2 \times \pi \times 8 \mathrm{~cm} \times 8 \mathrm{~cm}-\pi \times 16 \mathrm{~cm} \times$
16 cm
$=640 \pi \mathrm{~cm}^{2}$
The area of the shaded region is $\mathbf{6 4 0} \boldsymbol{\pi} \mathrm{cm}^{2}$.

Answer to Unit 4.1

Question 8
Area of A
$=2 \times\left(\frac{1}{4} \times \pi \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}-\frac{1}{2} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}\right)$
$=2 \times(25 \pi-50)$
$=(50 \pi-100) \mathrm{cm}^{2}$
The area of Part A is $\mathbf{(5 0 \pi - 1 0 0)} \mathbf{c m}^{2}$.
Area of C
$=\frac{1}{4} \times \pi \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}-\frac{1}{2} \times \pi \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}-10 \mathrm{~cm}$
$\times 10 \mathrm{~cm}$
$=(100 \pi-50 \pi-100) \mathrm{cm}^{2}$
$=(50 \pi-100) \mathrm{cm}^{2}$
The area of Part C is $\mathbf{(5 0 \pi - 1 0 0)} \mathbf{c m}^{2}$.

Question 9
Area of quadrant
$=\frac{1}{4} \times \frac{22}{7} \times 41 \mathrm{~cm} \times 41 \mathrm{~cm}$
$=1386 \mathrm{~cm}^{2}$
Area of 1 small square
$=21 \mathrm{~cm} \times 21 \mathrm{~cm}$
$=441 \mathrm{~cm}^{2}$
Area of the figure
$=2\left(1386 \mathrm{~cm}^{2}-441 \mathrm{~cm}^{2}\right)+3 \times 441 \mathrm{~cm}^{2}$
$=3213 \mathrm{~cm}^{2}$
The area of the shaded part is $\mathbf{3 2 1 3} \mathbf{~ c m}^{2}$.

Answer to Unit 4.2

Let's Learn 4.2

Ask Yourself

1. Yes. The figure is made up of 2 semicircles of diameter 20 cm enclosed in a square of side 20 cm .
2. Yes. Lines are needed to make the shapes that form the figure more distinct.

Let's Practise 4.2

Question 1
Area of the shaded part
$=2 \times \frac{1}{2} \times 36 \mathrm{~cm} \times 18 \mathrm{~cm}$
$=648 \mathrm{~cm}^{2}$
The area of the shaded parts is $\mathbf{6 4 8} \mathbf{~ c m}^{2}$.

Question 2
Area of the big circle
$=\pi \times 21 \mathrm{~cm} \times 21 \mathrm{~cm}$
$=\frac{22}{7} \times 21 \mathrm{~cm} \times 21 \mathrm{~cm}$
$=1386 \mathrm{~cm}^{2}$

Question 2 (Cont.)

Area of small circles
$=\frac{22}{7} \times 7 \mathrm{~cm} \times 7 \mathrm{~cm} \times 7$
$=\frac{22}{7} \times 49 \mathrm{~cm}^{2} \times 7$
$=1078 \mathrm{~cm}^{2}$
Area of shaded parts
$=\frac{1386-1078}{12} \times 2$
$=51 \frac{1}{3}$
The area of the shaded parts is $51 \frac{1}{3} \mathbf{c m}^{2}$.

Question 3

Area of the shaded parts $=3.14 \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$

$$
=314 \mathrm{~cm}^{2}
$$

The area of the shaded parts is $\mathbf{3 1 4} \mathbf{~ c m}^{2}$.

Question 4

Area of figure $=1 \frac{1}{4} \times \frac{22}{7} \times 7 \mathrm{~cm} \times 7 \mathrm{~cm}$

$$
=192.5 \mathrm{~cm}^{2}
$$

The area of the figure is $192.5 \mathbf{~ c m}^{2}$.

Perimeter of figure $=1 \frac{1}{4} \times 2 \times \frac{22}{7} \times 7 \mathrm{~cm}+14 \mathrm{~cm}$

$$
=69 \mathrm{~cm}
$$

The perimeter of the figure is $69 \mathbf{c m}$.

Question 5

Area of shaded figure (3 small squares) $=192 \mathrm{~cm}^{2}$
Area of 1 small square $=192 \mathrm{~cm}^{2} \div 3$

$$
=64 \mathrm{~cm}^{2}
$$

Side of square $=\sqrt{64} \mathrm{~cm}^{2}$

$$
=8 \mathrm{~cm}
$$

Radius of quadrant $=2 \times 8 \mathrm{~cm}$

$$
=16 \mathrm{~cm}
$$

Perimeter of shaded parts
$=\frac{1}{2} \times 2 \times 3.14 \times 16 \mathrm{~cm}+4 \times 8 \mathrm{~cm}$
$=82.24 \mathrm{~cm}$
The perimeter of the shaded parts is $\mathbf{8 2 . 2 4} \mathbf{~ c m}$.

Question 1
(a) $A B=4 u, B C=3 u$

$$
\begin{aligned}
\text { Perimeter } & =4 u+3 u+4 u+3 u \\
= & 14 u \\
14 u & =84 \mathrm{~cm} \\
1 u & =84 \mathrm{~cm} \div 14 \\
& =6 \mathrm{~cm} \\
3 u & =3 \times 6 \mathrm{~cm} \\
& =18 \mathrm{~cm}
\end{aligned}
$$

The length of each small rectangle is $18 \mathbf{c m}$.
(b) $\mathrm{BC}=3 \times 6 \mathrm{~cm}$
$=18 \mathrm{~cm}$
Area of $A B C D=24 \mathrm{~cm} \times 18 \mathrm{~cm}$

$$
=432 \mathrm{~cm}^{2}
$$

Area of shaded portions
$=432 \mathrm{~cm}^{2}-\left(\frac{1}{4} \times 3.14 \times 18 \mathrm{~cm} \times 18 \mathrm{~cm}\right)+6 \mathrm{~cm} \times 6 \mathrm{~cm}$ $=213.66 \mathrm{~cm}^{2}$
The area of the shaded portions is $\mathbf{2 1 3 . 6 6} \mathbf{~ c m}^{2}$.

Question 2
(a) Circumference of $A B C=\frac{1}{2} \times 2 \times 3.14 \times 3 \mathrm{~cm}$

$$
=9.42 \mathrm{~cm}
$$

Circumference of CDE $=\frac{1}{2} \times 2 \times 3.14 \times 4 \mathrm{~cm}$

$$
=12.56 \mathrm{~cm}
$$

Circumference of $\mathrm{ACE}=\frac{1}{2} \times 2 \times 3.14 \times 5 \mathrm{~cm}$

$$
=15.7 \mathrm{~cm}
$$

Perimeter of PQRS $=4 \times \sqrt{50} \mathrm{~cm}$
Perimeter of shaded regions
$=9.42 \mathrm{~cm}+12.56 \mathrm{~cm}+15.7 \mathrm{~cm}+4 \times \sqrt{50} \mathrm{~cm}$
$\approx 65.96 \mathrm{~cm}$
The perimeter of the shaded regions is 65.96 cm .
(b) Area of PQRS $=\frac{1}{2} \times 10 \mathrm{~cm} \times 5 \mathrm{~cm} \times 2$

$$
=50 \mathrm{~cm}^{2}
$$

Area of unshaded part in semicircle ACE not covered by triangle ACE
$=\frac{1}{2} \times 3.14 \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}-\frac{1}{2} \times 6 \mathrm{~cm} \times 8 \mathrm{~cm}$
$=15.25 \mathrm{~cm}^{2}$
Area of shaded parts in semicircles ABC and CDE
$=\frac{1}{2} \times 3.14 \times 3 \mathrm{~cm} \times 3 \mathrm{~cm}+\frac{1}{2} \times 3.14 \times 4 \mathrm{~cm} \times 4 \mathrm{~cm}-$
$15.25 \mathrm{~cm}^{2}$
$=24 \mathrm{~cm}^{2}$
Total area of shaded regions $=50 \mathrm{~cm}^{2}+24 \mathrm{~cm}^{2}$

$$
=74 \mathrm{~cm}^{2}
$$

The total area of the 3 shaded regions is $\mathbf{7 4} \mathbf{~ c m}^{2}$.

Question 3
(a) $\mathrm{OL}=5 \mathrm{~cm}-2 \mathrm{~cm}$

$$
=3 \mathrm{~cm}
$$

The length OL is $\mathbf{3 \mathbf { c m }}$.
(b) Area of shaded triangle $=\frac{1}{2} \times 4 \mathrm{~cm} \times 3 \mathrm{~cm}$

$$
=6 \mathrm{~cm}^{2}
$$

Area of shaded $\frac{3}{4}-$ circle $=\frac{3}{4} \times \pi \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}$

$$
=18.75 \pi \mathrm{~cm}^{2}
$$

Area of shaded parts $=6 \mathrm{~cm}^{2}+18.75 \pi \mathrm{~cm}^{2}$

$$
\approx 64.9 \mathrm{~cm}^{2}
$$

The area of the shaded parts is $\mathbf{6 4 . 9} \mathbf{~ c m}^{2}$.

Question 4
Area of the shaded parts
$=\frac{1}{2} \times \pi \times(9)^{2}+2 \times \frac{1}{2} \times 9 \times 9$
$=208.2345 \mathrm{~cm}^{2}$
$=208.2$ cm2

Question 5

$A+B=110 \mathrm{~cm}^{2}$
$A+B+C=180 \mathrm{~cm}^{2}$
$C=180-110$
$=70 \mathrm{~cm}^{2}$
$B+C+D=130 \mathrm{~cm}^{2}$
$B+D=130-70$

$$
=60 \mathrm{~cm}^{2}
$$

The area of shaded parts is $\mathbf{6 0} \mathbf{~ c m}^{\mathbf{2}}$

Question 6
Area of the shaded part
$=\left(\frac{1}{2} \times 7.5 \times 12\right)+\left[\left(\frac{1}{4} \times \pi \times(7.5)^{2}\right)-\left(\frac{1}{2} \times 7.5 \times 7.5\right)\right]$
$=45+16.0536$
$=61.05 \mathrm{~cm}^{2}$
The area of shaded parts is $\mathbf{6 1 . 0 5} \mathbf{c m}^{2}$.

Question 7

Area of 4 half-rugby
$=4 \times\left[\frac{1}{4} \times \pi \times(4 \mathrm{~cm})^{2}-\frac{1}{2} \times 4 \mathrm{~cm} \times 4 \mathrm{~cm}\right]$
$=4 \times(4 \pi-8) \mathrm{cm}^{2}$
$=(16 \pi-32) \mathrm{cm}^{2}$
Area of shaded parts in the square
$=\left(\frac{1}{2} \times 16 \mathrm{~cm} \times 8 \mathrm{~cm} \times 2\right)-(\pi \times 4 \mathrm{~cm} \times 4 \mathrm{~cm})-\left(2 \times \frac{1}{2} \times\right.$
$8 \mathrm{~cm} \times 4 \mathrm{~cm}$)
$=(96-16 \pi) \mathrm{cm}^{2}$
Area of shaded parts
$=16 \pi-32+(96-16 \pi)$
$=64 \mathrm{~cm}^{2}$
The total area of the shaded parts is $\mathbf{6 4} \mathbf{~ c m}^{2}$.

Question 8
Area of shaded parts
$=4 \times \frac{1}{2} \times 16 \mathrm{~cm} \times 8 \mathrm{~cm}$
$=256 \mathrm{~cm}^{2}$
$16 \times 16-8\left[\left(\frac{1}{4} \times 3.14 \times 8 \times 8\right)-\left(\frac{1}{2} \times 8 \times 8\right)\right]$
$=256-8(18.24)$
$=1108.08$
The total area of the shaded parts is $1108.08 \mathrm{~cm}^{2}$.

Chapter 5 Speed

Answer to Unit 5.1

Let's Get Started 5.1

1. (a) Distance $=90 \times 2$

$$
=180
$$

Distance travelled for the first part of her journey was 180 km.
(b) Total distance $=3 \times 180$

$$
=540
$$

The total distance of her journey was 540 km.
(c) Time taken $=5 \mathrm{~h}-2 \mathrm{~h}$

$$
=3 \mathrm{~h}
$$

Distance travelled $=540-180$

$$
=360
$$

Speed $=360 \div 3$

$$
=120
$$

Jaime's speed for the last part of the journey was 120 km/h.
(d) Average speed for whole journey $=540 \div 7$

$$
=77 \frac{1}{2}
$$

Jaime's average speed for the whole journey was $77 \frac{1}{2} \mathrm{~km} / \mathrm{h}$.
2. (a) $\frac{3}{4}$ Total $=300 \mathrm{~km}$
$\frac{1}{4}$ Total $=300 \mathrm{~km} \div 3$

$$
=100 \mathrm{~km}
$$

$\frac{4}{4}$ Total $=4 \times 100 \mathrm{~km}$

$$
=400 \text { km }
$$

Town A and Town B is $\mathbf{4 0 0} \mathbf{~ k m}$ apart.
(b) Time taken $=100 \div 80$

$$
=1 \frac{1}{4}
$$

He took $1 \frac{1}{4} h$ to travel the first part of the journey.

Answer to Unit 5.1

(c) Time taken $=400 \div 100$
$=4$
He took 4 h to travel from Town A to Town B .

Let's Learn 5.1

Ask Yourself

1. The entire journey is made up of 4 parts.
2. Yes. At any part of the journey, there is only one unknown where the other two variables are given.

Let's Practise 5.1

Question 1
Speed for the $2^{\text {nd }}$ part of the journey $=150 \div 1.5$

$$
=100
$$

Mr Wong was travelling at a constant speed of $\mathbf{1 0 0} \mathbf{~ k m} / \mathrm{h}$.

Question 2
$\frac{1}{5}$ Total $=2.6 \mathrm{~km}$
$\frac{3}{5}$ Total $=2.6 \mathrm{~km} \times 3$

$$
=7.8 \mathrm{~km}
$$

Time taken for $\frac{3}{5}$ of journey $=7.8 \div 12$

$$
\begin{aligned}
& =\frac{13}{20}(\mathrm{~h}) \\
& =39(\mathrm{~min})
\end{aligned}
$$

Time taken for $\frac{1}{2}$ of remaining journey $=2.6 \div 13$

$$
\begin{aligned}
& =\frac{1}{5}(\mathrm{~h}) \\
& =12(\mathrm{~min})
\end{aligned}
$$

Time taken $=39+12+15$

$$
=66
$$

Alice took $1 \mathbf{h r} 6 \mathbf{~ m i n}$ to complete the whole journey.

Question 3
$1^{\text {st }}$ part of journey $=\frac{7}{20}$ of Total
$2^{\text {nd }}$ part of journey $=\frac{2}{5}$ of Total

$$
=\frac{8}{20} \text { of Total }
$$

$3^{\text {rd }}$ part of journey $=1-\frac{7}{20}-\frac{8}{20}$
$=\frac{5}{20}($ of Total $)$
$\frac{7}{20}$ Total $=84 \mathrm{~km}$
$\frac{1}{20}$ Total $=84 \mathrm{~km} \div 7$
$=12 \mathrm{~km}$
$\frac{5}{20}$ Total $=5 \times 12 \mathrm{~km}$
$=60 \mathrm{~km}$
Speed for last part of journey $=60 \div 1$

$$
=60
$$

His average speed for the last part of the journey was 60 km/h.

Answer to Unit 5.1

Question 4

Distance ($1^{\text {st }}$ part $)=59 \mathrm{~km} / \mathrm{h} \times \frac{1}{2} \mathrm{~h}$

$$
=29.5 \mathrm{~km}
$$

Distance (middle part) $=352 \mathrm{~km}-126 \mathrm{~km}-29.5 \mathrm{~km}$

$$
=196.5 \mathrm{~km}
$$

Time take (last part) $=126 \mathrm{~km} \div 72 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& =1 \frac{3}{4} \mathrm{~h} \\
& =1 \mathrm{~h} 45 \mathrm{~min}
\end{aligned}
$$

Time taken (middle part)
$=5 \mathrm{~h} 15 \mathrm{~min}-30 \mathrm{~min}-1 \mathrm{~h} 45 \mathrm{~min}$
$=3 \mathrm{~h}$
Average speed (middle part) $=196.5 \mathrm{~km} \div 3 \mathrm{~h}$

$$
=65.5 \mathrm{~km} / \mathrm{h}
$$

The average speed for the middle part of the journey was

65.5 km/h.

Question 5
Distance $(A$ to B to $C)=6 \mathrm{~km} / \mathrm{h} \times \frac{2}{5} \mathrm{~h}$

$$
=2.4 \mathrm{~km}
$$

Total distance $=2.4 \mathrm{~km} \times 2$

$$
=4.8 \mathrm{~km}
$$

Total time taken $=24 \mathrm{~min}+12 \mathrm{~min}$

$$
\begin{aligned}
& =36 \mathrm{~min} \\
& =\frac{3}{5} \mathrm{~h}
\end{aligned}
$$

Belinda's average speed $=4.8 \mathrm{~km} \div \frac{3}{5} \mathrm{~h}$

$$
=8 \text { km/h }
$$

Belinda's average speed to walk around the rectangular path was 8 km/h.

Answer to Unit 5.2

Let's Get Started 5.2

Scenario A
(a) sum; total distance
(b) Sunny; Hector; $20 \mathrm{~m} / \mathrm{min}$
(c) meet
(d) 100 m
(e) 80 m

Scenario B
(a) Sunny; $20 \mathrm{~m} / \mathrm{min}$
(b) 1000 m or 1 km
(c) 9 min
(d) 600 m
(e) 760 m
(f) 20 m
(g) 19 min
(h) 1.36 km

Page 162016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Answer to Unit 5.2

Let's Learn 5.2

Ask Yourself

1. The total distance travelled is the same.

Let's Practise 5.2

Question 1

Time taken to meet $=544 \div(64+72)$

$$
\text { = } 4 \text { (hours) }
$$

4 hours after 5 p.m. is 9 p.m.
They will meet each other at 9 p.m.

Question 2
Distance bus travelled in $15 \mathrm{~min}=100 \mathrm{~km} / \mathrm{h} \times \frac{1}{4} \mathrm{~h}$

$$
=25 \mathrm{~km}
$$

Distance lorry travelled in $15 \mathrm{~min}=80 \mathrm{~km} / \mathrm{h} \times \frac{1}{4} \mathrm{~h}$

$$
=20 \mathrm{~km}
$$

Distance between two towns $=25 \mathrm{~km}+20 \mathrm{~km}$

$$
=45 \mathrm{~km}
$$

The distance between the two towns is 45 km.

Question 3
(a) Time taken to meet $=217.5 \div(80+65)$

$$
\text { = } 1.5 \text { (hours) }
$$

1.5 hours after 0930 was 1100.

They met at 1100.
(b) Distance Adrian travelled more $=1.5 \mathrm{~h} \times 15 \mathrm{~km} / \mathrm{h}$

$$
=22.5 \mathrm{~km}
$$

Adrian had travelled $\mathbf{2 2 . 5} \mathbf{~ k m}$ further than Ben when they met each other.

Question 4
Distance Tom covered at $3 \mathrm{p} . \mathrm{m} .=70 \mathrm{~km} / \mathrm{h} \times 4 \mathrm{~h}$

$$
=280 \mathrm{~km}
$$

Distance BIII covered at 3 p.m. $=440 \mathrm{~km}-280 \mathrm{~km}$

$$
=160 \mathrm{~km}
$$

Bills speed $=160 \mathrm{~km} \div 4 \mathrm{~h}$

$$
=40 \mathrm{~km} / \mathrm{h}
$$

Bill's speed was 40 km/h.

Question 5
Time taken to meet $=1600 \div(120+80)$

$$
\text { = } 8 \text { (seconds) }
$$

Distance Bala covered in $8 \mathrm{~s}=120 \mathrm{~m} / \mathrm{s} \times 8 \mathrm{~s}$

$$
=960 \mathrm{~m}
$$

Distance more to reach Point $P=1600 m-960 m$

$$
=640 \mathrm{~m}
$$

Bala will have to cycle a further $\mathbf{6 4 0} \mathbf{~ m}$.

Answer to Unit 5.3

Let's Get Started 5.3

Case 1:

	Alex	Benson	Ratio
Time taken	$480 \div 80=$	$480 \div 60=$	$A: B$
	$6(\mathrm{~h})$	$8(\mathrm{~h})$	$3: 4$

Case 2:

	Alex	Benson	Ratio
Speed	80	60	$\mathrm{~A}: \mathrm{B}$
			$4: 3$
Distance	$80 \times 4=$	$60 \times 4=$	$\mathrm{A}: \mathrm{B}$
travelled	$320(\mathrm{~km})$	$240(\mathrm{~km})$	$320: 240$
			$4: 3$

Case 3:

	Alex	Benson	Ratio
Time taken	4 h	2 h	$\mathrm{~A}: \mathrm{B}$
			$2: 1$
Distance	$50 \times 4=$	$50 \times 2=$	$\mathrm{A}: \mathrm{B}$
travelled	$200(\mathrm{~km})$	$100(\mathrm{~km})$	$200: 100$
			$2: 1$

Circle "opposite"
Circle "the same"
Circle "the same"

Let's Learn 5.3

Ask Yourself

1. Distance travelled is the common/the same.

Let's Practise 5.3

Question 1

$S_{J}: S_{T}$
$D_{J} \quad: \quad D_{T}$
3 : 4
3 : 4

Distance covered by J for $1^{\text {st }} 30 \mathrm{mins}=\frac{1}{2} \times 60$

$$
=30 \mathrm{~km}
$$

$4-3=1$
$1 u=30$
$4 u=30 \times 4$
$=120$
Time taken by to overtake $=\frac{120}{80}$

$$
=1.5 \mathrm{~h}
$$

Tom would have travelled for 1.5 hours before he overtook Julianna.

Question 2
$S_{J}: S_{B}$
54 : 63 : 63
$\begin{array}{lll}6 & : 7 & 6\end{array}$
$60 \mathrm{mins}=54 \mathrm{~km}$
1 min $=\frac{54}{60}$
20 mins $=\frac{54}{60} \times 20$
$=18$
$1 \mathrm{u}=18 \mathrm{~km}$

Answer to Unit 5.3

Question 2 (Cont.)

$$
\begin{aligned}
7 \mathrm{u} & =7 \times 18 \mathrm{~km} \\
& =126 \mathrm{~km}
\end{aligned} \begin{aligned}
\text { Time taken by Ben } & =\frac{126}{63} \\
& =2 \mathrm{~h}
\end{aligned}
$$

2 h after $0620=0820$
Ben will overtake John at 0820
\qquad
Question 3
Common distance

T_{L}	$:$	T_{F}	S_{L}	$:$	S_{F}
28	$:$	16	4	$:$	7
7	$:$	4			

Difference $($ Speed $)=7 u-4 u$

$$
=3 u
$$

$3 u=24$
$1 u=24 \div 3$
$=8$
$4 u=4 \times 8$
$=32$
(a) Linda's speed was $32 \mathrm{~m} / \mathrm{min}$.

Distance of the race $=32 \mathrm{~m} / \mathrm{min} \times 28 \mathrm{~min}$

$$
=896 \mathrm{~m}
$$

(b) The distance of the race is 896 m .

Question 4
Common distance

S_{A}	$:$	S_{B}	T_{A}	$:$	T_{B}
4	$:$	5	5	$:$	4

$5 u=6(h)$
$1 u=6 \div 5$
$=1.2(\mathrm{~h})$
$4 u=4 \times 1.2$
$=4.8(\mathrm{~h})$
$=4 \mathrm{~h} 48 \mathrm{~min}$
Time difference $=5 \mathrm{~h}-4 \mathrm{~h} 48 \mathrm{~min}$

$$
=12 \mathrm{~min}
$$

Train B reached Station Q 12 minutes ahead of Train A.

Question 5
(a) 7 a.m. to 7.12 a.m. $=12 \mathrm{mins}$

Distance travelled by Jaycee $=100 \times 12$

$$
=1200 \mathrm{~m}
$$

Distance travelled by Delroy $=1200+240$

$$
=1440 \mathrm{~m}
$$

Delroy's speed $=\frac{1440}{12}$

$$
=120 \mathrm{~m} / \mathrm{min}
$$

Delroy's speed was $120 \mathrm{~m} / \mathrm{min}$.

Answer to Unit 5.3

Question 5 (Cont.)

(b) Common distance

Speed	Time
$J: D$	J : D
100:120	6:5
$5: 6$	
$1 u=40$	
$5 u=40 \times 5$	
$=200$	

Distance of the race $=200 \times 120$

$$
\begin{aligned}
& =24000 \mathrm{~m} \\
& =\mathbf{2 4} \mathbf{k m}
\end{aligned}
$$

Answer to Chapter 5 Review Questions

Question 1
(a) $56 \times 1.5=84 \mathrm{~km}$

$$
\begin{aligned}
\text { Kumar's speed } & =84 \div 1 \frac{1}{4} \\
& =67.2 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Mr Kumar's speed was 67.2 km/h.
(b) $67.2 \times 1.5=100.8 \mathrm{~km}$
$84+100.8+56=240.8 \mathrm{~km}$
Time taken by Mr Lim $=\frac{240.8}{56}$

$$
=4 \mathrm{~h} 18 \mathrm{~min}
$$

4h 18 min before 7.45 pm is 3.27 pm or 1527.
Mr Lim left Town Y at 1527.

Question 2
(a) 11.30 am to $2.10 \mathrm{pm}=2 \mathrm{~h} 40 \mathrm{mins}$

$$
\begin{aligned}
& =2 \frac{2}{3} \mathrm{~h} \\
& =\frac{8}{3} \mathrm{~h}
\end{aligned}
$$

$70 \times \frac{8}{3}=\frac{560}{3} \mathrm{~km}$
$350-35-\frac{560}{3}=\frac{385}{3} \mathrm{~km}$
$\frac{385}{3}+45=\frac{520}{3} \mathrm{~km}$
Bill's speed $=\frac{520}{3} \div \frac{8}{3}$

$$
=65 \mathrm{~km} / \mathrm{h}
$$

Bill's speed was 65 km/h.
(b) $70+65=135$

Time taken to meet $=\frac{350-35}{135}$

$$
=\frac{7}{3} h
$$

$$
=2 \frac{1}{3} \mathrm{~h}
$$

$2 \frac{1}{3} \mathrm{~h}$ after 11.30 am
$=1.50 \mathrm{pm}$
Tom and Bill met at 1.50pm.

Page 182016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Question 3

Speed	Time
Y : X	Y : X
5:4	4:5

$1 \mathrm{u}=10 \mathrm{~min}$
$5 \mathrm{u}=50 \mathrm{~min}$
50 mins after $9 \mathrm{am}=9.50 \mathrm{am}$
Train X reached Station B at 9.50am.

Question 4
$60 \times 2=120$
$120+25=145$
$5 \mathrm{u}=145 \mathrm{~km}$
$1 u=145 \div 5$
$=29 \mathrm{~km}$
$7 \mathrm{u}=7 \times 29 \mathrm{~km}$
$=203 \mathrm{~km}$
Time taken to travel from Town X to Town $Y=\frac{203}{60} h$

$$
\begin{aligned}
& =3 \frac{23}{60} \mathrm{~h} \\
& =3 \mathrm{~h} 23 \mathrm{mins}
\end{aligned}
$$

It would take the van $\mathbf{3} \mathbf{h} \mathbf{2 3}$ mins to travel from Town X to Town Y.

Question 5
(a) Difference for $\frac{1}{3}$ of the journey $=25 \mathrm{~km}$

Difference for $\frac{3}{3}$ of the journey $=25 \times 3$

$$
=75 \mathrm{~km}
$$

$10 \mathrm{~km}=1 \mathrm{~h}$
$75 \mathrm{~km}=\frac{1}{10} \times 75$

$$
=7.5 \mathrm{~h}
$$

It took Mr Cheong 7.5 hours to complete the journey.
(b) Mr Soon's speed $=\frac{450}{7.5}+10=70 \mathrm{~km} / \mathrm{h}$

Time taken by Mr Soon $=\frac{450}{70}$

$$
\begin{aligned}
& =6 \frac{3}{7} \mathrm{~h} \\
& \approx 6 \mathrm{~h} 26 \mathrm{mins}
\end{aligned}
$$

Mr Soon took 6 hr 26 mins to complete the journey.

Question 6
(a) $3 \mathrm{u}=36 \mathrm{~km}$

$$
\begin{aligned}
1 \mathrm{u} & =36 \div 3 \\
& =12 \mathrm{~km} \\
2 \mathrm{u} & =12 \times 2 \\
& =24 \mathrm{~km}
\end{aligned}
$$

Time taken for the $1^{\text {st }} 36 \mathrm{~km}=\frac{36}{108}$

$$
=\frac{1}{3} \mathrm{~h}
$$

Question 6 (Cont.)

Time taken for the remaining $24 \mathrm{~km}=\frac{24}{72}$

$$
=\frac{1}{3} \mathrm{~h}
$$

Total time taken $=\frac{1}{3}+\frac{1}{3}$

$$
\begin{aligned}
& =\frac{2}{3} \mathrm{~h} \\
& =40 \mathrm{mins}
\end{aligned}
$$

40 mins before 1.20 pm $=\mathbf{1 2 . 4 0} \mathbf{~ p m}$
(b) Average speed of the van $=\frac{36+24}{2 / 3}$
$=90 \mathrm{~km} / \mathrm{h}$

Chapter 6 Simultaneous

Answer to Unit 6

Let's Get Started

2.

$$
\begin{aligned}
& \frac{1}{4} C+\frac{1}{10} L=26 \\
& \frac{4}{4} C+\frac{10}{10} L=140
\end{aligned}
$$

3.

$$
\begin{aligned}
& \frac{1}{2} M+\frac{1}{2} S+J=540 \\
& \frac{2}{2} M+\frac{2}{2} S+J=540
\end{aligned}
$$

Let's Learn

Ask Yourself

1. The fractions or relationship of the unknown can be formed.

Let's Practise

Question 1
$\frac{1}{5} B+\frac{1}{4} F=32$
$\frac{5}{5} B+\frac{4}{4} F=130 \ldots(2)$
Multiply (1) by 5 ,
$\frac{5}{5} B+\frac{5}{4} F=160 \ldots$ (3)
(3) - (2),

$$
\begin{aligned}
\frac{1}{4} F & =160-130 \\
& =30 \\
\frac{4}{4} F & =4 \times 30 \\
& =120
\end{aligned}
$$

There are 120 fridge magnets in the box.

Question 2
$\frac{2}{7} C+\frac{3}{10} S=68 \ldots(1)$
$\frac{7}{7} \mathrm{C}+\frac{10}{10} \mathrm{~S}=231 \ldots$ (2)
Multiply (1) by 10 and (2) by 3,
$\frac{20}{7} C+\frac{30}{10} S=680 \ldots$ (3)
$\frac{21}{7} C+\frac{30}{10} S=693 \ldots$ (4)
(4) - (3),
$\frac{1}{7} C=693-680$

$$
=13
$$

$\frac{5}{7} C=5 \times 13$
$=65$
65 cupcakes were eaten.

Question 3
$40 \mathrm{P}=25 \mathrm{~N}$
$8 \mathrm{P}=5 \mathrm{~N}$
$32 \mathrm{P}=20 \mathrm{~N}$
Total items in the box $($ based on $N)=20+3$

$$
=23
$$

Max no. of N to be added $=25-23$

$$
=2
$$

2 more nail-clippers can be added to the box.

Question 4
$52 \mathrm{P}=38 \mathrm{~B}$
$26 P=19 B$
Total items bought $($ based on $B)=19+14$

$$
=33
$$

Additional bookmarks she can buy $=38-33$

$$
=5
$$

Jennifer can buy 5 more bookmarks with her remaining money.

Question 5
$7 B+2 C=10.3 \ldots(1)$
$6 B+5 C=13.1 \ldots(2)$
Multiply (1) by 5 and (2) by 2 ,
$35 B+10 C=51.5 \ldots$ (1)
$12 B+10 C=26.2 \ldots(2)$
(1) - (2),
$23 B=25.3$
$1 B=25.3 \div 23$
$=1.1$
$12 B=12 \times 1.1$

$$
=13.2
$$

$10 C=26.2-13.2$

$$
=13
$$

$1 C=13 \div 10$
$=1.3$

Question 5 (Cont.)

$$
\begin{aligned}
12 \mathrm{C} & =12 \times 1.3 \\
& =15.6 \\
12 \mathrm{~B} & +12 \mathrm{C}
\end{aligned}=13.2+15.6 \text { (} \quad=28.8
$$

1 dozen bottles of soft drink and 1 dozen cartons of milk cost \$28.80.

Question 6
$6 S=8 P$
$2 S+5 P=12.65$
$6 S+15 P=12.65 \times 3$
$=37.95$
$8 P+15 P=37.95$
$23 \mathrm{P}=37.95$
$1 \mathrm{P}=37.95 \div 23$
$=1.65$
$5 \mathrm{P}=5 \times 1.65$
$=8.25$
$2 S=12.65-8.25$
$=4.4$
$1 S=4.4 \div 2$
$=2.2$
$1 S+1 P=2.2+1.65$

$$
=3.85
$$

$1 \mathrm{~GB}=3.85$
$7 \mathrm{~GB}=3.85 \times 7$
$=26.95$
Ali spent $\$ 26.95$ on the goodie bags

Chapter 7 Pie Chart

Answer to Unit 7

Let's Get Started

1. Durian $=\frac{135}{360} \times 16$

$$
=6
$$

6 children like durian ice cream.
2. Walk $=1600 \div 4$

$$
=400
$$

400 students walk to school.

Let's Learn

Ask Yourself

1. Fractions

Page 202016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Answer to Unit 7

Let's Practise

Question 1
$M+C=\frac{1}{4}+\frac{9}{20}$

$$
=\frac{7}{10}
$$

$V+B=1-\frac{7}{10}$
$=\frac{3}{10}$
No. of vans $=400 \div 2$
$=200$
No. of vans and bicycles $=400+200$

$$
=600
$$

$\frac{3}{10}$ Total $=600$
$\frac{1}{10}$ Total $=600 \div 3$
$=200$
Total $=10 \times 200$
$=2000$
Percentage of bicycles $=\frac{400}{2000} \times 100 \%$

$$
=20 \%
$$

20% of the vehicles were bicycles.

Question 2
Rent $=\frac{1}{2}-\frac{1}{12}-\frac{1}{4}$
$=\frac{1}{6}$
(a) $\frac{1}{6}$ of her money was spent on rent.

Savings $=50 \%-2.5 \%$
= 47.5\%
(b) She saved $\mathbf{4 7 . 5 \%}$ of her money monthly
$\frac{1}{6}$ Total $=850$
Total $=6 \times 850$

$$
=5100
$$

Savings a year $=47.5 \% \times 5100 \times 6$

$$
=14535
$$

(c) She would save $\$ 14535$ in half a year.

Question 3
Fraction of hamsters $=1-\frac{1}{4}-\frac{1}{12}-\frac{1}{3}$
$=\frac{1}{3}$
Difference between hamsters and birds $=\frac{1}{3}-\frac{1}{4}$

$$
=\frac{1}{12}
$$

Percentage difference $=\frac{1}{12} \times 100 \%$

$$
=8 \frac{1}{3} \%
$$

There are $\mathbf{8} \frac{1}{3} \%$ more hamsters than birds.

Answer to Unit 7

Question 4
(a) Fraction of boys $=1-\frac{3}{20}-\frac{3}{10}-\frac{1}{10}$

$$
=\frac{9}{20}
$$

$\frac{9}{20}$ of the people who attended the event were boys.
(b) $\frac{9}{20}$ Total $=180$
$\frac{1}{20}$ Total $=180 \div 9$

$$
=20
$$

$\frac{20}{20}$ Total $=20 \times 20$

$$
=400
$$

400 people attended the event last December.
(c) $80 \%=400$
$1 \%=400 \div 80$

$$
=5
$$

$100 \%=5 \times 100$
$=500$
500 people attended the event in the previous year.

Question 5
(a) Percentage of Tiramisu and butter cakes sold

$$
=50 \%-15 \%-10 \%
$$

$$
=25 \%
$$

(b) $5 u=25 \%$
$1 u=25 \% \div 5$ $=5 \%$
$3 u=3 \times 5 \%$

$$
=15 \%
$$

$$
50 \%=80
$$

$$
1 \%=80 \div 50
$$

$$
=1.6
$$

$$
15 \%=15 \times 1.6
$$

$$
=24
$$

24 Tiramisu cakes were sold.

Question 6
(a) $25 \%=16+14$

$$
=30
$$

$$
100 \%=4 \times 30
$$

$$
=120
$$

120 students took part in the survey.
(b) Oranges + Durians $=60$

Oranges $=\frac{2}{3} \times 60$
$=40$
Fraction $=\frac{40}{120}$

$$
=\frac{1}{3}
$$

$\frac{1}{3}$ of the students preferred oranges.

Chapter 8 Algebra

Let's Get Started

1.

Value of \boldsymbol{x}	Value of $\mathbf{6 8}+\boldsymbol{x}$
1	$68+1=69$
2	$68+2=70$
3	$68+3=71$
4	$68+4=72$

2.

Value of a	Value of b	Value of $\frac{a+b}{2}$
12	10	$\frac{\mathbf{1 2 + 1 0}}{2}=\mathbf{1 1}$
21	11	$\frac{21+11}{2}=\mathbf{1 6}$
28	12	$\frac{28+12}{2}=\mathbf{2 0}$
35	13	$\frac{\mathbf{3 5 + 1 3}}{2}=\mathbf{2 4}$
40	0	$\frac{40+0}{2}=\mathbf{2 0}$

Let's Learn

Ask Yourself

1. Add the values.
2. Add the total values. Then divide the result by the quantity that make up the total value

Think Further

1. The solution changes to the following:

Michelle $=8 \mathrm{~m}$ sweets
Total no. of sweets eaten $=4 m+8 m$

$$
=12 \mathrm{~m}
$$

Average $=\frac{12 m}{2}$

$$
=6 \mathrm{~m}
$$

Both girls ate an average of $\mathbf{6 m}$ sweets.

Let's Practise

Question 1

Total no. of pencils $=10+p+3 p$

$$
=10+4 p
$$

Average $=\frac{10+4 p}{3}$
The girls bought an average of $\frac{10+4 p}{3}$ pencils.

Question 2

Total mass $=5 x \mathrm{~kg}+(5 x+7) \mathrm{kg}$

$$
=(10 x+7) \mathrm{kg}
$$

Average mass $=\frac{10 x+7}{2} \mathrm{~kg}$
Their average mass was $\frac{10 x+7}{2} \mathbf{k g}$.

Question 3
Mia's cookies $=8 a-16$

$$
\begin{aligned}
& =8 \times 17-16 \\
& =120
\end{aligned}
$$

Anita's cookies $=8 \times 17$

$$
=136
$$

Anita and Mia had 136 and 120 cookies respectively.

Question 4
No. of plates sold on Tue $=(4 k+2+2 k)$

$$
=(6 k+2)
$$

No. of plates sold on Wed $=(4 k+2)+(4 k+2)$

$$
=(8 k+4)
$$

Total no. of plates sold $=(6 k+2)+(8 k+4)+(4 k+2)$

$$
=(18 k+8)
$$

Lena sold a total of $(\mathbf{1 8 k}+\boldsymbol{8})$ plates of chicken rice over the 3 days.

Question 5
Keith's stamps $=3 m$
Calissa's stamps $=3 m+8$
(a) Total stamps $=m+3 m+(3 m+8)$

$$
=7 m+8
$$

They have $\mathbf{(7 m + 8)}$ stamps altogether.
(b) Total stamps $=7 \times 9+8$

$$
\text { = } 71
$$

The 3 children have 71 stamps altogether.

Question 6
(a) Total (at first) $=(39 y+6)$ stickers Mr Lee had $(39 y+6)$ stickers at first.
(b) Total (at first) $=39 \times 4+6$

Mr Lee had 162 stickers at first.

Question 7
Weiqi's age $=\frac{1}{3} n$
(a) Natalie's age $=\frac{1}{3} n-4$

Natalie is $\left(\frac{1}{3} n-4\right)$ years old.
(b) Total ages $=n+\frac{1}{3} n+\frac{1}{3} n-4$

$$
\begin{aligned}
& =15+5+5-4 \\
& =21
\end{aligned}
$$

Their total ages is $\mathbf{2 1}$ years.

Question 8
Perimeter (units) $=3 u+2 u+3 u+2 u$

$$
=10 u
$$

Page 222016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Answer to Chapter 8

Question 8 (Cont.)

$10 u=2 h$
$2 u=\frac{2 h}{5}$
The breadth of the rectangle is $\frac{2 h}{5} \mathrm{~cm}$.

Chapter 9 Mixed Review Questions

Question 1

Case 1:80 pears left		Case 2: 400 pears left	
A	P	A	P
20	60	60	20
$1^{\times 3}$	$3^{\times 3}$	3	1
3			

$8 u=400-80$
$=320$
$1 u=320 \div 8$
$=40$
$9 u+80=9 \times 40+80$

$$
=440
$$

There are 440 pears at the stall.

Question 2

Answer to Chapter 9

Question 3 (Cont.)

$3 u=39$
$1 u=39 \div 3$

$$
=13
$$

Omera $=6 u-16$

$$
\begin{aligned}
& =6 \times 13-16 \\
& =62
\end{aligned}
$$

Omera has $\$ 62$.

Question 4
Commission received for first 100 jerseys
$=100 \times 20$
$=\$ 2000$
Commission earned from the remaining jerseys sold
= 3708 - 2000
= 828
No. of jerseys sold for the $\$ 828$ commission $=828 \div 36$

$$
=23
$$

Total jerseys sold $=100+23$

$$
=123
$$

Fred sold 123 jerseys.

Question 5

Items	Quantity	\times	Value (\$)	Total value (\$)
\$5-stamps (Arun)	1 u	\times	5	$5 u$
\$2-stamps (Kavita)	$1 \mathrm{u}+30$	\times	2	$2 \mathrm{u}+60$
Total	$2 \mathrm{u}+30$			$7 \mathrm{u}+60$

$\$ 5$ stamps	2 u	3 l		
$\$ 2$ stamps	2 u	60	180	

$$
\begin{aligned}
3 u & =60+180 \\
& =240 \\
1 u & =240 \div 3 \\
& =80
\end{aligned}
$$

Arun has 80 stamps.

Question 6

$2-\mathrm{m}$	$:$	$3-m$	$2-m$	$:$	Incorrect
$1^{\times 2}$	$:$	$3^{\times 2}$	2	$:$	1

Question 6 (Cont.)

Items	Quantity	\times	Value (Marks)	Total value (Marks)
Correct answer $(2-$-mark qn)	$2 u$	\times	2	$4 u$
Correct answer $(3-m a r k ~ q n) ~$	$6 u$	\times	3	$18 u$
Total	$8 u$			$22 u$

$$
\begin{aligned}
& 22 u=176 \\
& \begin{aligned}
1 u & =176 \div 22 \\
& =8
\end{aligned}
\end{aligned}
$$

Total attempt $=8 u$

$$
\begin{aligned}
& =8 \times 8 \\
& =64
\end{aligned}
$$

Unanswered questions $=75-64$

$$
=11
$$

11 questions were left unanswered.

Question 7				
A (now)	$:$	R (before)	$:$	Total
3	$:$	1	$:$	4
A (before)	$:$	R (now)	$:$	Total
$1^{\times 2}$	$:$	$1^{\times 2}$	$:$	$2^{\times 2}$
2	$:$	2	$:$	4

$\begin{aligned} \text { Total current age } & =5 u \\ & =30\end{aligned}$
$1 u=30 \div 5$
$=6$
A now $=3 u$

$$
\begin{aligned}
& =3 \times 6 \\
& =18
\end{aligned}
$$

(a) Alda is 18 years old now.

(b) In 12 years' time, Rena's age will be 80% of Alda's age.

Answer to Chapter 9

Question 8

$$
\begin{aligned}
\frac{1}{4} \mathrm{R} 2 & =\frac{1}{4} \\
\frac{4}{4} \mathrm{R} 2 & =4 \times \frac{1}{4} \\
& =1 \\
\frac{1}{4} \mathrm{R} 1 & =1+\frac{1}{4} \\
& =1 \frac{1}{4} \\
\frac{4}{4} \mathrm{R} 1 & =4 \times \frac{5}{4} \\
& =5 \\
\frac{1}{4} \mathrm{~T} & =5+\frac{1}{4} \\
& =5 \frac{1}{4} \\
\frac{4}{4} \mathrm{~T} & =4 \times \frac{21}{4} \\
& =21
\end{aligned}
$$

Althea bought 21 pizzas.

Question 9

(Actual)	$\underline{\mathbf{P}}$	$\underline{\mathbf{W}}$
At first	$3 u^{\times 5}$	$4 u^{\times 3}$
Change	$-18^{\times 5}$	$-10^{\times 3}$
End	$3 p^{\times 5}$	$5 p^{\times 3}$

(Working)	\mathbf{P}	$\underline{\mathbf{W}}$
At first	$15 u$	$12 u$
Change	-90	-30
End	$15 p$	$15 p$

$$
\begin{aligned}
& 3 u=90-30 \\
&=60 \\
& 1 u=60 \div 3 \\
&=20 \\
& 3 u=3 \times 20 \\
&=60 \\
& \text { There are } 60 \text { pink meringues in the jar. }
\end{aligned}
$$

Page 242016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Answer to Chapter 9

Question 10

$\underline{\text { At first }}$	Silver	Platinum	Total
Shop A	$\frac{2}{5} \mathrm{~A}=32$	$\frac{3}{5} \mathrm{~A}=48$	$\frac{5}{5} \mathrm{~A}=80$
Shop B	$\frac{3}{10} \mathrm{~B}=36$	$\frac{7}{10} \mathrm{~B}=84$	$\frac{7}{7} \mathrm{~B}=120$
Total	$32+36$ $=68$	$48+84$ $=132$	$80+120$ $=200$
End	$\frac{2}{5} \mathrm{~A}$	$\frac{3}{5} \mathrm{~A}$	$\frac{5}{5} \mathrm{~A}$
Shop A	$\frac{7}{25} \mathrm{~B}$	$\frac{18}{25} \mathrm{~B}$	$\frac{25}{25} \mathrm{~B}$
Shop B	68	132	200

$\frac{2}{5} A+\frac{7}{25} B=68$	(1) $\times 3$
$\frac{3}{5} A+\frac{18}{25} B=132$	(2) $\times 2$
$\frac{6}{5} A+\frac{21}{25} B=204$	(3)
$\frac{6}{5} A+\frac{36}{25} B=264$	(4)
(4) - (3)	
$\frac{15}{25} B=60$	
$\frac{1}{25} B=4$	
$\frac{18}{25} B=72$	
Difference $=84-72$	
$=12$	

The owner of Shop B passed 12 platinum bracelets to Shop A.

Question 11

Distance bus covered in $3 \mathrm{~h}=3 \mathrm{~h} \times 70 \mathrm{~km} / \mathrm{h}$

$$
=210 \mathrm{~km}
$$

Distance bus covered from where they passed each other to $\mathrm{H}=210+170$

$$
=380
$$

Speed of car $=380 \div 4$

$$
=95
$$

Distance between two towns $=7 \mathrm{~h} \times 95 \mathrm{~km} / \mathrm{h}$

$$
=665 \mathrm{~km}
$$

The distance between the 2 towns is $\mathbf{6 6 5} \mathbf{~ k m}$.

Question 12

C	4 u	63
W	4	
B	3 u	

Question 12 (Cont.)

$$
\begin{aligned}
& \frac{1}{5} \text { of total }=4 u \\
& \text { Total }=20 u \\
& 20 u-11 u=63 \\
& 9 u=63 \\
& \begin{aligned}
1 u & =63 \div 9 \\
= & 7
\end{aligned} \\
& \begin{array}{c}
20 u=20 \times 7 \\
=
\end{array}
\end{aligned}
$$

There were 140 muffins in the box altogether.

Question 13

Case 1:

Sarah 360 muffins left

Case 2:

Sarah 72 muffins left

$$
\begin{aligned}
3 u & =360-72 \\
& =288 \\
1 u & =288 \div 3 \\
& =96
\end{aligned}
$$

Sarah $=1 u+360$

$$
\begin{aligned}
& =1 \times 96+360 \\
& =456
\end{aligned}
$$

Check
Sarah $=4 u+72$

$$
\begin{aligned}
& =4 \times 96+72 \\
& =456
\end{aligned}
$$

Sarah baked 456 muffins.

Question 14

Total cost of pairs of boots $=5152$
Total cost of pairs of sneakers $=5152+266$

$$
=5418
$$

Items	Units	\times	Value (\$)	Total value(\$)
Boots	2 u	\times	$?$	5152
Sneakers	3 u	\times	$?$	5418
Total	5 u			10570

Cost of 3 u of sneakers $=5418$
Cost of 1 u of sneakers $=5418 \div 3$

$$
=1806
$$

Cost of 2 u of boots $=5152$

Question 14 (Cont.)

Cost of 1 u of boots $=5152 \div 2$

$$
=2576
$$

B

B	1806	770
S	1806	

$$
=14
$$

No. of pairs of sneakers $=3 u$

$$
\begin{aligned}
& =3 \times 14 \\
& =42
\end{aligned}
$$

Cost of 1 pair of sneaker $=5418 \div 42$

$$
=129
$$

The cost of 1 pair of sneaker was $\$ 129$.

Question 15
Candle A (7.30 a.m. to 1.30 p.m.) $=6$ hours
Candle B (9 a.m. to 1 p.m.) $=4$ hours
Rate of burning in 1 hour,
Candle A= $\frac{1}{6}$
Candle B $=\frac{1}{4}$
Fraction of Candle A left unburnt at 11.30 a.m.
(11.30 a.m. to 1.30 p.m. $)=\frac{1}{6} \times 2$

$$
=\frac{1}{3}
$$

Fraction of Candle B left unburnt at 11.30 a.m.
$\begin{aligned}(11.30 \text { a.m. to } 1 \text { p.m. }) & =\frac{1}{4} \times 1.5 \\ & =\frac{3}{8}\end{aligned}$
$\frac{3}{9} A=\frac{3}{8} B$
A: B
9:8
$1 u=3$
Length of Candle A $=9 \mathrm{u}$

$$
\begin{aligned}
& =9 \times 3 \\
& =27
\end{aligned}
$$

The original length of Candle A was 27 cm respectively.

Question 16
In 2021
L
A

1 u	
1 u	3 u

In 6 years' time

L	6	$1 u$				
	6	$1 u$	6	$1 u$	8	

$$
\begin{aligned}
2 \mathrm{u} & =6+8 \\
& =14 \\
1 \mathrm{u} & =7
\end{aligned}
$$

Question 16 (Cont.)

Abigail (in 2021) $=4 u$

$$
\begin{aligned}
& =4 \times 7 \\
& =28
\end{aligned}
$$

Abigail $($ in 2031 $)=28+10$

$$
=38
$$

Abigail will be 38 years old in the year 2031.

Question 17

$13 u=78$
$1 u=78 \div 13$
$=6$
Ali and Bryan $=20 u+15 u$

$$
=35 u
$$

$35 u=35 \times 6$

$$
=210
$$

Ali and Bryan have 210 marbles altogether.

Question 18

Common volume
$\frac{3}{10} R=\frac{1}{4} S$
$\frac{3}{10} R=\frac{3}{12} S$
R : S
10: 12
Difference $=12 u-10 u=2 u$
$2 u=48$
$1 u=48 \div 2=24$
$10 u=10 \times 24=240$
Height of rectangular tank $=240 \div(8 \times 6)=5$
The height of the rectangular tank is 5 m .

Question 19
Total Gummies

40

$$
\begin{aligned}
\frac{4}{7} \mathrm{~T} & =3 \mathrm{u}^{\times 4}(12 \mathrm{u}) \\
\frac{1}{7} \mathrm{~T} & =12 \mathrm{u} \div 4 \\
& =3 \mathrm{u}
\end{aligned}
$$

Page 262016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Question 19 (Cont.)

$\frac{7}{7} \mathrm{~T}=7 \times 3 \mathrm{u}$
$=21 u$
Friend $=21 u-16 u$

$$
=5 u
$$

$5 u=40$
$1 u=40 \div 5$
$=8$
$21 u=21 \times 8$
$=168$
There were 168 gummies in the bag at first

Question 20
9 steps

9 more run than 9 walk $=100-19$

$$
\text { = } 81 \text { (seconds) }
$$

1 more run than 1 walk $=81 \div 9$

$$
\text { = } 9 \text { (seconds) }
$$

10 more run than 10 walk $=10 \times 9$

$$
\text { = } 90 \text { (seconds) }
$$

To convert 10 run to 10 walk, take Luther 90 s more.
Time taken to walk 1 flight $=100+90$

$$
\text { = } 190 \text { (seconds) }
$$

Time taken to walk 2 flights $=190 \times 2$

$$
\text { = } 380 \text { (seconds) }
$$

Luther would take 380 s to walk up both flights of stairs.

Question 21

At first
A: B
$3: 5$
Since Box B has 110 more apples than Box A,
$2 u=110$
$1 u=110 \div 2$
= 55
Total apples $=8 u$

$$
\begin{gathered}
=8 \times 55 \\
=440
\end{gathered}
$$

Red apples $=\frac{3}{4} \times 440$

$$
=330
$$

There were 330 red apples.

Question 22 (Cont.)

$\frac{3}{3} P=12 u+30$
$\frac{1}{3} P=4 u+10$ (red marbles)
$\frac{4}{4} \mathrm{Q}=12 \mathrm{u}$
$\frac{3}{4} Q=9 u$ (red marbles)
$4 u+9 u=62-10$
$13 u=52$
$1 u=52 \div 13$
$=4$
$12 u+30=12 \times 4+30$

There were 78 marbles in Box P.

Question 23

Case 1:

Gretel gives 4 boxes
G : K : Total
$2^{\times 3}: 5^{\times 3}: 7^{\times 3}$
6 : 15 : 21
Gretel's Actual

Case 1

Case 2

$2 u=4$
$1 u=4 \div 2=2$
Gretel
C1: $6 u+4=6 \times 2+4$
$=16$
C2: $8 u=8 \times 2$
$=16$
Keith
$C 1: 15 u=15 \times 2$
$=30$
C2: $13 u+4=13 \times 2+4$

$$
=30
$$

Gretel and Keith have 16 boxes of cookies and 30
boxes of cookies respectively.

Question 24 (Cont.)

$$
\begin{gathered}
5 u+8 u=31-5 \\
=26 \\
13 u=26 \\
1 u=26 \div 13 \\
=2 \\
2 u+1=2 \times 2+1 \\
2 u \\
=5
\end{gathered}
$$

The total cost of 1 bracelet and 1 hairclip is $\$ 5$.

Question 25

Choco	Gum	Mint	Total
$88 \times 4=352$	$12 \times 7=84$	$0 \times 22=0$	436
$86 \times 4=344$	$13 \times 7=91$	$1 \times 22=22$	457
$56 \times 4=224$	$28 \times 7=196$	$16 \times 22=0$	772

Diff between 772 and $436=336$
Gap of 336 divided by $21=336 \div 21$

$$
=16
$$

Graham ordered $\mathbf{2 8}$ gumballs.

Question 26
$\frac{2}{5} A=\frac{3}{4} B$
$\frac{6}{15} A=\frac{6}{8} B$

(Actual)	$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$
At first	$15 \mathrm{u}^{\times 2}$	$8 \mathrm{u}^{\times 3}$
Change	$-222^{\times 2}$	$-136^{\times 3}$
End	$3 p^{\times 2}$	$2 p^{\times 3}$
(Working)	$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$
At first	30 u	24 u
Change	-444	-408
End	$6 p$	$6 p$

$6 u=36$
$1 u=36 \div 6$
$=6$
Total tarts at first $=15 u+8 u$

$$
=23 u
$$

$23 u=23 \times 6$

$$
=138
$$

There were 138 mini tarts in both boxes at first.

Question 27

Items	Change	End	At first
$(3) \mathrm{L}$	$-\frac{1}{5}(1 \mathrm{u})$	$\frac{6}{5}(6 \mathrm{u})$	$\frac{5}{5}(5 \mathrm{u})$
$(2) \mathrm{J}$	$-\frac{1}{2}(6 \mathrm{u})$	$\frac{1}{2}(6 \mathrm{u})$	$\frac{2}{2}(12 \mathrm{u})$
$(1) \mathrm{K}$	$+3(9 \mathrm{u})$	$4(12 \mathrm{u})$	$1(3 \mathrm{u})$

	K	$:$	J	$:$	L
	$1 \mathrm{u}^{\times 6}$	$:$	$1 u^{\times 6}$		$1 u^{\times 6}$
End	6 u	$:$	$6 u$		$6 u$
$\operatorname{Rev}(3)$					$-1 u$
	$6 u$	$:$	$6 u$	$:$	$5 u$
$\operatorname{Rev}(2)$			$+6 u$		
	$6 u^{\times 2}$	$:$	$12 u^{\times 2}$	$:$	$5 u^{\times 2}$
	$12 u$	$:$	$24 u$	$:$	$10 u$
$\operatorname{Rev}(1)$	$-9 u$				
At first	$3 u$	$:$	$24 u$	$:$	$10 u$

Total (at first) $=3 u+24 u+10 u$

$$
=37 u
$$

$37 u=14060$
$1 u=14060 \div 37$
$=380$
Lenny at first $=10 \mathrm{u}$

$$
\begin{aligned}
& =10 \times 380 \\
& =3800
\end{aligned}
$$

Lenny saved \$3800 at first.

Question 28

$$
\begin{gathered}
18 u+96+28 u=4236 \\
46 u=4236-96 \\
=4140 \\
1 u=4140 \div 46 \\
=90
\end{gathered}
$$

Page 282016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Question 28 (Cont.)

General $=18 u+96$

$$
\begin{aligned}
& =18 \times 90+96 \\
& =1716
\end{aligned}
$$

Sienna's monthly general expenses was $\$ 1716$.

Question 29

	Spent	End	At first
Zeph	$\frac{1}{8}(5 u)$	$\frac{7}{8}(35 u)$	$\frac{8}{8}(40 u)$
Adelia	$\frac{2}{5}$	$\frac{3}{5}$	$\frac{5}{5}$
	$(16 u+32)$	$(24 u+48)$	$(40 u+80)$

End

$$
\begin{aligned}
11 u & =51+48 \\
& =99 \\
1 u & =99 \div 11 \\
& =9
\end{aligned}
$$

Adelia at first $=40 u+9 \times 80$

$$
=440
$$

Adelia had \$440 at first.

Question 30

In 1 h

In 30 min
Fred $=\frac{1}{3}$ journey
William $=\frac{1}{4}$ journey
$\frac{1}{3} \div 2=\frac{1}{6}$ journey
$\frac{1}{4} \div 2=\frac{1}{8}$ journey
$\frac{24}{24}-\frac{1}{6}-\frac{1}{8}=\frac{17}{24}$
$\frac{17}{24}$ journey $=170$
$\frac{1}{24}$ journey $=170 \div 17$

$$
=10
$$

$\frac{24}{24}$ journey $=24 \times 10$

$$
=240
$$

Fred's speed $=240 \div 3$

$$
=80
$$

Fred's speed was 80 km/h.

Answer to Chapter 9

Question 31
1 group of $\$ 72$ = $\$ 9$ (discount)
Amount to pay for every group = \$72-\$9

$$
=\$ 63
$$

No. of groups of $\$ 63=\$ 840 \div \$ 63$

$$
=13 R \$ 21
$$

13 groups of $\$ 63=13 \times \$ 9$
= \$117 (discount)

Amelia was given $\$ 117$ discount.

Question 32

Items	Quantity	\times	Value(\$)	Total value (\$)
On time	$15 u$	\times	5	$75 u$
Late	$4 u$	\times	3.5	$14 u$
Total	19 u			89 u

$$
\begin{aligned}
& 89 \mathrm{u}=7298 \\
& \begin{aligned}
1 \mathrm{u} & =7298 \div 89 \\
& =82
\end{aligned} \\
& \begin{aligned}
\text { Late } & =4 \mathrm{u} \\
& =4 \times 82 \\
& =328
\end{aligned}
\end{aligned}
$$

(a) 328 parcels were delivered late.

Difference in cost of 1 parcel $=5-3.5=1.5$
Difference in total cost $=328 \times 1.5=492$
(b) The company would collect an additional \$492.

Question 33

$R: P+N$	$P: N: P+N$
$5^{x 4}: 7^{x 4}$	$1^{x 7}: 3^{x 7}: 4^{x 7}$
$20: 28$	$7: 21: 28$

20 : 28
7 : 21 : 28
Summary Ratio
R : N : P
20 : 21 : 7

Items	Quantity	\times	Value(\$)	Total(\$)
R	$20 u$	\times	2	$40 u$
N	$21 u$	\times	8	$168 u$
P	$7 u$	\times	4	$28 u$
Total	$48 u$			$236 u$

$236 u=705$
$1 u=208 \div 236$
$=3$
Total items $=48 \mathrm{u}$

$$
\begin{aligned}
& =48 \times 3 \\
& =144
\end{aligned}
$$

Sumitha bought 144 items altogether.

Question 34

$1 u=77$
$8 u=8 \times 77$

$$
=616
$$

Jonas had 616 comic books left.

Question 35
Diff in savings $=5-2$

$$
=3
$$

No. of days $=180 \div 3$

$$
=60
$$

(a) Alfred took 60 days to save $\$ 180$ less than Bruce.

Total no. of days from Dec to Mar $=31 \times 3+28$ $=121$

Total savings $=2 \times 121+5 \times 121$

$$
=847
$$

(b) Both of them would have save $\$ 847$ altogether at the end of March.

Question 36
At first

	Gave	End	At first
A	$\frac{1}{5}$	$\frac{4}{5}$	$\frac{5}{5}$
$(3 u+12)$	$(12 u+48)$	$(15 u+60)$	
C	$\frac{1}{3}(5 u)$	$\frac{2}{3}(10 u)$	$\frac{3}{3}(15 u)$

$$
\begin{aligned}
2 u & =12-6 \\
& =6 \\
1 u & =6 \div 2 \\
& =3
\end{aligned}
$$

Apples Pie remained $=12 u+48$

$$
\begin{aligned}
& =12 \times 3+48 \\
& =84
\end{aligned}
$$

84 apple pies remained in the end.

Question 37

Speed	Time	
S1 : S2	T1	T2
60 : 80	4	3
3 : 4		
1u of time $=6+8$		
$=14$		
4 u of time $=4 \times 14$		
$=56$		

Time taken to reach on time $=56-6$

$$
=50
$$

Check
$3 u$ of time $=3 \times 14$

$$
=42
$$

Time taken to reach on time $=42+8$

$$
=50
$$

Time to reach $=50 \mathrm{~min}$ after 7.30 a.m.

$$
=8.20 \mathrm{a} . \mathrm{m} .
$$

(a) Logan needs to reach his office at 8.20 a.m. to be on time.
Distance $=60 \times \frac{56}{60}$

$$
=56
$$

Check
Distance $=80 \times \frac{42}{60}$
$=56$
(b) The distance between Logan's office and his house is 56 km.

Question 38

	Sold	Left	At first
A	$\frac{1}{5}$	$\frac{4}{5}$	$\frac{5}{5}$
M	$\frac{3}{25}$	$\frac{22}{25}$	$\frac{25}{25}$

Left
$\frac{4}{5} \mathrm{~A}=\frac{22}{25} \mathrm{M}$
Q
$\frac{44}{55} \mathrm{~A}=\frac{44}{50} \mathrm{M}$

$A:$	$M:$	$A+M$	$S:$	$A+M$
$55:$	$50:$	105	$2^{\times 35}:$	3^{35}
70	$:$	105		

Summary
$A: M$: S
$55: 50: 70$

Page 302016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Answer to Chapter 9

Question 38 (Cont.)

Apples and mango strudel left $=88 \mathrm{u}$
$88 u=352$
$1 u=352 \div 88$
$=4$
Strawberry = 70u

$$
\begin{aligned}
& =70 \times 4 \\
& =280
\end{aligned}
$$

(a) There were $\mathbf{2 8 0}$ strawberry strudels.

$$
\begin{aligned}
\text { Sold } & =11 u+6 u \\
& =17 u \\
17 u & =17 \times 4 \\
& =68
\end{aligned}
$$

(b) 68 strudels were sold.

Question 39

	Gave	Left	At first
Blue	$\frac{2}{5}$	$\frac{3}{5}$	$\frac{5}{5}$
	$(2 u+8)$	$(3 u+12)$	$(5 u+20)$
Red	$\frac{1}{2}(3 u)$	$\frac{1}{2}(3 u)$	$\frac{2}{2}(6 u)$

At first

$$
\begin{aligned}
11 u & =42-20 \\
& =22 \\
1 u & =22 \div 11 \\
& =2
\end{aligned}
$$

Red pens gave away $=3 u$

$$
\begin{aligned}
& =3 \times 2 \\
& =6
\end{aligned}
$$

Amira gave away 6 red pens.

When Julian reached the finish line, Gordon would be 8 km ahead of him (assuming Gordon continues running)

Answer to Chapter 9

Question 40 (Cont.)

Time taken for Gordon $8 \mathrm{~km}=8 \div 16$

$$
=\frac{1}{2} h
$$

Time Julian reached the finishing line
$=\frac{1}{2} \mathrm{~h}+11.45 \mathrm{a} . \mathrm{m}$.
$=12.15 \mathrm{p} . \mathrm{m}$.
Julian reached the finishing line at $\mathbf{1 2 . 1 5}$ p.m.

Question 41
1 bootie = \$6.75
Case 1, 6 Booties $=6 \times \$ 6.75$

$$
=\$ 40.50
$$

Case 2, 4 Booties $=4 \times \$ 6.75$

$$
=\$ 27
$$

2 mittens $=46-23.5$

$$
=22.5
$$

1 mitten $=22.5 \div 2$

$$
=11.25
$$

Using Case 1,
Cassandra's $\$=4 \mathrm{M}+46$

$$
\begin{aligned}
& =4 \times 11.25+46 \\
& =91
\end{aligned}
$$

Check

$$
\begin{aligned}
6 \mathrm{M}+23.5 & =6 \times 11.25+23.5 \\
& =91
\end{aligned}
$$

Cassandra has \$91.

Question 42
$\frac{1}{4} R=\frac{1}{3} G$

(Actual)	$\underline{\mathbf{R}}$	$\underline{\mathbf{G}}$
At first	$4 u^{\times 5}$	$3 u^{\times 2}$
Change	$-206^{\times 5}$	$+80^{\times 2}$
End	$2 p^{\times 5}$	$5 p^{\times^{2}}$
(Working)	$\underline{\mathbf{R}}$	$\underline{\mathbf{G}}$
At first	$20 u$	$6 u$
Change	-1030	+160
End	$10 p$	$10 p$

Answer to Chapter 9

Question 42 (Cont.)

$14 u=160+1030$

$$
=1190
$$

$1 u=1190 \div 14$

$$
=85
$$

Ryan at first $=4 u$

$$
\begin{aligned}
& =4 \times 85 \\
& =340
\end{aligned}
$$

(a) Ryan had \$340 at first.

Gillian in the end $=3 u+80$

$$
\begin{aligned}
& =3 \times 85+80 \\
& =335
\end{aligned}
$$

(b) Gillian had \$335 in the end.

Question 43

	At first (1)	Change	End (1)
H	$50 u+20\left(\frac{5}{5} H\right)$	Gave $20 u+20\left(\frac{2}{5} H\right)$	$30 u+30\left(\frac{3}{5} H\right)$
J	$50 u$	Received $20 u+20$	$70 u+20$

	At first (2)	Change	End (2)
H	$30 u+30$	Received $14 u+4$	$44 u+34$
J	$70 u+20\left(\frac{5}{5} J\right)$	Gave $14 u+4\left(\frac{1}{5} J\right)$	$56 u+16\left(\frac{4}{5} J\right)$

End (2)

$12 u=34+6-16$
$=24$
$1 u=24 \div 12$
$=2$
Helena at first $=50 u+50$

$$
\begin{aligned}
& =50 \times 2+50 \\
& =150
\end{aligned}
$$

Helena had \$150 at first.

Question 44
No. of qns answered $=30-4$

$$
=26
$$

Answer to Chapter 9

Question 44 (Cont.)

Total marks for 26 questions $=34+(4 \times 1)$

$$
=38
$$

Correct	Wrong	Total
$26 \times 3=78$	$0 \times 2=0$ (deduct)	78
$25 \times 3=75$	$1 \times 2=2$ (deduct)	73
$18 \times 3=54$	$8 \times 2=16$ (deduct)	38

Diff between the total marks $=78-38$

$$
=40
$$

Difference between 1 correct and 1 wrong = 78-73

$$
=5
$$

No. of qns answered wrongly $=40 \div 5$

$$
\text { = } 8
$$

No. of qns answered correctly $=26-8$

$$
=18
$$

Tony answered 18 questions correctly.

Question 45

Case 1:		Case 2:		
Sharifah 800 cookies		Sharifah 1700		
			,	
S	D	S		D
6	3	3	:	6
$2^{x 2}$	$1^{\text {x2 }}$	1	:	2

$$
\begin{aligned}
& 3 \mathrm{u}=1700-800 \\
&=900 \\
& 1 u=900 \div 3 \\
&=300 \\
& \text { Sharifah }=4 u+800
\end{aligned}
$$

$$
\begin{aligned}
& =4 \times 300+800 \\
& =2000
\end{aligned}
$$

Check
Sharifah $=1 u+1700$

$$
\begin{aligned}
& =1 \times 300+1700 \\
& =2000
\end{aligned}
$$

No. of boxes $=2000 \div 50$

$$
=40
$$

Sharifah baked 40 boxes of cookies.

Question 46

(Actual) At first	$\frac{\text { Apples }}{2 u^{\times 7}}$	$\frac{\text { Oranges }}{3 u^{\times 3}}$
Change	$-20^{\times 7}$	$+30^{\times 3}$
End	$3 p^{\times 7}$	$7 \mathrm{p}^{\times 3}$

Page 322016 Copyright of onSponge Pte Ltd. No further reproduction and distribution.

Answer to Chapter 9

Question 46 (Cont.) (Working) $)$	$\frac{\text { Apples }}{}$	
At First	14 u	
Ohanges		
Change	-140	$9 u$
End	21 p	+90

Work model from end

$$
\begin{aligned}
5 u & =140+90 \\
& =230 \\
1 u & =230 \div 5 \\
& =46
\end{aligned}
$$

Apples at first $=2 u-20$

$$
\begin{aligned}
& =2 \times 46-20 \\
& =72
\end{aligned}
$$

Oranges at first $=3 u$

$$
\begin{aligned}
& =3 \times 46 \\
& =138
\end{aligned}
$$

Farmer Sam has 72 apples in the crate.

Empowered Learning

While every care has been taken to compile this answer booklet, errors may still arise in the course of compilation and production. If you notice any error, kindly write to feedback@onsponge.com so that we can review it.

